Microtubules and Gαo-signaling modulate the preferential secretion of young insulin secretory granules in islet β cells via independent pathways.

PLoS One

Department of Cell and Developmental Biology, The Program of Developmental Biology and the Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States of America.

Published: November 2021

For sustainable function, each pancreatic islet β cell maintains thousands of insulin secretory granules (SGs) at all times. Glucose stimulation induces the secretion of a small portion of these SGs and simultaneously boosts SG biosynthesis to sustain this stock. The failure of these processes, often induced by sustained high-insulin output, results in type 2 diabetes. Intriguingly, young insulin SGs are more likely secreted during glucose-stimulated insulin secretion (GSIS) for unknown reasons, while older SGs tend to lose releasability and be degraded. Here, we examine the roles of microtubule (MT) and Gαo-signaling in regulating the preferential secretion of young versus old SGs. We show that both MT-destabilization and Gαo inactivation results in more SGs localization near plasma membrane (PM) despite higher levels of GSIS and reduced SG biosynthesis. Intriguingly, MT-destabilization or Gαo-inactivation results in higher secretion probabilities of older SGs, while combining both having additive effects on boosting GSIS. Lastly, Gαo inactivation does not detectably destabilize the β-cell MT network. These findings suggest that Gαo and MT can modulate the preferential release of younger insulin SGs via largely parallel pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8297875PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0241939PLOS

Publication Analysis

Top Keywords

modulate preferential
8
preferential secretion
8
secretion young
8
young insulin
8
insulin secretory
8
secretory granules
8
sgs
8
insulin sgs
8
older sgs
8
gαo inactivation
8

Similar Publications

The present study investigated the neuromodulatory substrates of salience processing and its impact on memory encoding and behaviour, with a specific focus on two distinct types of salience: reward and contextual unexpectedness. 46 Participants performed a novel task paradigm modulating these two aspects independently and allowing for investigating their distinct and interactive effects on memory encoding while undergoing high-resolution fMRI. By using advanced image processing techniques tailored to examine midbrain and brainstem nuclei with high precision, our study additionally aimed to elucidate differential activation patterns in subcortical nuclei in response to reward-associated and contextually unexpected stimuli, including distinct pathways involving in particular dopaminergic modulation.

View Article and Find Full Text PDF

The placenta is a unique organ with various immunological and endocrinological roles that modulate maternal and fetal physiology to promote maternal-fetal tolerance, pregnancy maintenance, and parturition at term. During pregnancy, the hormone prolactin (PRL) is constitutively secreted by the placenta and is necessary for implantation, progesterone support, fetal development, and overall immune modulation. While PRL is essential for pregnancy, studies suggest that elevated levels of serum PRL (hyperprolactinemia) are associated with adverse pregnancy outcomes, including miscarriage, preterm birth, and preeclampsia.

View Article and Find Full Text PDF

Peritoneal dissemination frequently develops in patients with ovarian cancer (OC) and is associated with recurrence and metastasis. However, the cellular components and mechanisms supporting OC peritoneal metastasis are poorly understood. To elucidate these, we utilized RNA sequencing to investigate the cellular composition and function.

View Article and Find Full Text PDF

Background: Several chemical studies described the physiological efficacy of 1,4- dihydropyridines (DHPs). DHPs bind to specific sites on the α1 subunit of L-type calcium channels, where they demonstrate a more pronounced inhibition of Ca2+ influx in vascular smooth muscle compared to myocardial tissue. This selective inhibition is the basis for their preferential vasodilatory action on peripheral and coronary arteries, a characteristic that underlies their therapeutic utility in managing hypertension and angina.

View Article and Find Full Text PDF
Article Synopsis
  • Protein/protein interactions (PPI) are important for brain functions, but their use as drug targets for brain disorders is not fully explored.
  • A small molecule called compound 1028 has been identified that targets the FGF14/Na1.6 PPI and affects the channel's activity, resulting in increased excitability of neurons.
  • Administering compound 1028 can enhance motivation under challenging conditions, and its effects are linked to changes in dopamine levels in the brain, suggesting a new way to impact behaviors related to neuropsychiatric disorders.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!