Heterogeneity in the distribution of nutrients and oxygen gradients during biofilm growth gives rise to changes in phenotype. There has been long term interest in identifying spatial differences during biofilm development including clues that identify chemical heterogeneity. Laser ablation sample transfer (LAST) allows site-specific sampling combined with label free proteomics to distinguish radially and axially resolved proteomes for Pseudomonas aeruginosa biofilms. Specifically, differential protein abundances on oxic vs. anoxic regions of a biofilm were observed by combining LAST with bottom up proteomics. This study reveals a more active metabolism in the anoxic region of the biofilm with respect to the oxic region for this clinical strain of P. aeruginosa, despite this organism being considered an aerobe by nature. Protein abundance data related to cellular acclimations to chemical gradients include identification of glucose catabolizing proteins, high abundance of proteins from arginine and polyamine metabolism, and proteins that could also support virulence and environmental stress mediation in the anoxic region. Finally, the LAST methodology requires only a few mm2 of biofilm area to identify hundreds of proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8297752PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250911PLOS

Publication Analysis

Top Keywords

pseudomonas aeruginosa
8
laser ablation
8
ablation sample
8
sample transfer
8
anoxic region
8
biofilm
6
spatially resolved
4
resolved analysis
4
analysis pseudomonas
4
aeruginosa biofilm
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!