Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fuel cell (FC) is an attractive green alternative for today's fuel combustion systems. In common FCs, a polymer electrolyte membrane selectively conducts protons but blocks the passage of electrons and fuel. Nafion, the current benchmark membrane material, has a superior conductivity owing to unique morphology comprising randomly oriented elongated ionic nanochannels within its Teflon-like matrix. Channel orientation enhances Nafion conductivity, yet there has been no facile method to induce a stable alignment in the desired through-plane (TP) direction. Here, we report an approach based on dual electrospun Nafion-PVDF nanofiber composites that yields a stable TP alignment. It utilizes extreme thinness and strong inherent orientation within electrospun nanofibers, which is readily converted to TP alignment by plunging an electrospun nanofiber mat into a thin slit, resulting in nanofiber buckling and subsequent consolidation. Using TEM and SAXS, we demonstrate a pronounced and sustained TP ion channel orientation in prepared membranes, yielding a highly anisotropic swelling and conductivity exceeding that of bulk Nafion when normalized to Nafion content. The analysis also highlights the importance of PVDF as a stabilizing component, preserving orientation upon annealing, while a similarly prepared pure Nafion membrane loses anisotropy. The approach holds potential to advance the FC technology by overcoming current limitations of ionomeric membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c08087 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!