Like phosphorene, phosphorene nanoribbon (PNR) promises exotic properties but unzipping phosphorene into edge-defined PNR is non-trivial because of uncontrolled cutting of phosphorene along random directions. Here a facile electrochemical strategy to fabricate zigzag-edged PNRs in high yield (>80%) is reported. The presence of chemically active zigzag edges in PNR allows it to spontaneously react with Li to form a Li ion conducting Li P phase, which can be used as a protective layer on Li metal anode in lithium metal batteries (LMBs). PNR protective layer prevents the parasitic reaction between lithium metal and electrolyte and promotes Li ion diffusion kinetics, enabling homogenous Li ion flux and long-time cycling stability up to 1100 h at a current density of 1 mA cm . LiFePO |PNR-Li full-cell batteries with an areal capacity of 2 mAh cm , a lean electrolyte (20 µl mAh ) and a negative/positive (N/P) electrodes ratio of 3.5 can be stably cycled over 100 cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202102083 | DOI Listing |
Chem Asian J
January 2025
East China University of Science and Technology, School of Materials Science and Engineering, 130# Meilong Road, Shanghai, 200237, Shanghai, CHINA.
Li-ion capacitors (LICs) integrate the desirable features of lithium-ion batteries (LIBs) and supercapacitors (SCs), but the kinetic imbalance between the both electrodes leads to inferior electrochemical performance. Thus, constructing an advanced anode with outstanding rate capability and terrific redox kinetics is crucial to LICs. Herein, heterostructured ZnS/SnS2 nanosheets encapsulated into N-doped carbon microcubes (ZnS/SnS2@NC) are successfully fabricated.
View Article and Find Full Text PDFTungsten bronze oxides have emerged as attractive materials for energy storage owing to their fast charge-discharge property. However, the internal weakness of low capacity and short cycling performance impedes their development in wide application. In this work, the tungsten bronze WNbO nanorods with preferred orientation (001) were prepared by hydrothermal method for the first time.
View Article and Find Full Text PDFSmall
January 2025
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Owing to the nanoscale thickness, excellent mechanical and chemical stabilities, 2D materials including graphene and hexagonal boron nitride have emerged as promising artificial solid electrolyte interphase (SEI) candidates for lithium metal batteries. However, whether the implementation of 2D materials is beneficial to electrochemical performance remains controversial, and the key to confining the electroplated Li beneath the 2D materials remains elusive. Here, a nanocrystalline graphene (NG) film is synthesized on high-carbon Cu and the Li plating/stripping behavior on Cu grown with different 2D materials is investigated.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
Lithium metal is considered one of the most promising anode materials for lithium batteries due to its high theoretical specific capacity (3860 mA h g) and low redox potential (-3.04 V). However, uncontrolled lithium dendrite growth and severe interfacial side reactions during cycling result in poor performance and safety risks, significantly limiting its practical applications.
View Article and Find Full Text PDFLangmuir
January 2025
College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
Lithium-sulfur (Li-S) batteries hold significant promise due to high energy density, cost-effectiveness, and ecological sustainability, but their practical applications are constrained by suboptimal electrochemical performance and the detrimental shuttle effect. Herein, a porous, sandwich-structured composite was developed to function as a freestanding cathode designed for Li-S batteries without aluminum foil. Porous carbon nanofibers (PCNF) were employed as the conductive matrix for sulfur, with tungsten carbide (WC) being incorporated to furnish abundant active sites for polysulfide adsorption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!