Background: With the increasing use of magnetic resonance imaging in the assessment of acute intracerebral hemorrhage, diffusion-weighted imaging hyperintense lesions have been recognized to occur at sites remote to the hematoma in up to 40% of patients. We investigated whether blood pressure reduction was associated with diffusion-weighted imaging hyperintense lesions in acute intracerebral hemorrhage and whether such lesions are associated with worse clinical outcomes by analyzing imaging data from a randomized trial.
Methods: We performed exploratory subgroup analyses in an open-label randomized trial that investigated acute blood pressure lowering in 1000 patients with intracerebral hemorrhage between May 2011 and September 2015. Eligible participants were assigned to an intensive systolic blood pressure target of 110-139 mm Hg versus 140-179 mm Hg with the use of intravenous nicardipine. Of these, 171 patients had requisite magnetic resonance imaging sequences for inclusion in these subgroup analyses. The primary outcome was the presence of diffusion-weighted imaging hyperintense lesions. Secondary outcomes included death or disability and serious adverse event at 90 days.
Results: Diffusion-weighted imaging hyperintense lesions were present in 25% of patients (mean age 62 years). Hematoma volume > 30 cm was an adjusted predictor (adjusted relative risk 2.41, 95% confidence interval 1.00-5.80) of lesion presence. Lesions occurred in 25% of intensively treated patients and 24% of standard treatment patients (relative risk 1.01, 95% confidence interval 0.71-1.43, p = 0.97). Patients with diffusion-weighted imaging hyperintense lesions had similar frequencies of death or disability at 90 days, compared with patients without lesions.
Conclusions: Randomized assignment to intensive acute blood pressure lowering did not result in a greater frequency of diffusion-weighted imaging hyperintense lesion. Alternative mechanisms of diffusion-weighted imaging hyperintense lesion formation other than hemodynamic fluctuations need to be explored. Clinical trial registration ClinicalTrials.gov (Ref. NCT01176565; https://clinicaltrials.gov/ct2/show/NCT01176565 ).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12028-021-01254-9 | DOI Listing |
BMC Cancer
January 2025
Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, Henan, China.
Objectives: To construct a prediction model based on deep learning (DL) and radiomics features of diffusion weighted imaging (DWI), and clinical variables for evaluating TP53 mutations in endometrial cancer (EC).
Methods: DWI and clinical data from 155 EC patients were included in this study, consisting of 80 in the training set, 35 in the test set, and 40 in the external validation set. Radiomics features, convolutional neural network-based DL features, and clinical variables were analyzed.
Med Phys
January 2025
Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Background: Diffusion-weighted (DW) turbo-spin-echo (TSE) imaging offers improved geometric fidelity compared to single-shot echo-planar-imaging (EPI). However, it suffers from low signal-to-noise ratio (SNR) and prolonged acquisition times, thereby restricting its applications in diagnosis and MRI-guided radiotherapy (MRgRT).
Purpose: To develop a joint k-b space reconstruction algorithm for concurrent reconstruction of DW-TSE images and the apparent diffusion coefficient (ADC) map with enhanced image quality and more accurate quantitative measurements.
BMJ Open
January 2025
School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
Objective: To evaluate the relationship between infarct pattern, inferred stroke mechanism and risk of recurrence in patients with ischaemic stroke. The question is clinically relevant to optimise secondary stroke prevention investigations and treatment.
Design: We conducted a retrospective analysis of the dabigatran treatment of acute stroke II (DATAS II) trial (ClinicalTrials.
Cir Cir
January 2025
Department of Neurosurgery, Spinal Health Center, Memorial Hospital, Istanbul, Turkey.
Objective: We aimed to elucidate the histopathological pre-diagnosis of cranial gliomas with magnetic resonance imaging (MRI) techniques in gliomas.
Method: A total of 82 glioma patients were enrolled to our study. Pre-operative conventional MRI images (non-contrast T1/T2/flair/contrast-enhanced T1) and advanced MRI images (DAG and ADC mapping, MRI spectroscopy and perfusion MRI [PMRI]) were analyzed.
Transl Stroke Res
January 2025
Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
To investigate corticospinal tract (CST) injury and remodeling in patients with basal ganglia intracerebral hemorrhage (ICH) and explore the characterization capabilities of the corresponding parameters. In this prospective study, baseline, scale, and diffusion-weighted imaging (DWI) data were collected from patient cohorts. Participants were stratified into favorable (0-3 points) and unfavorable (4-6 points) prognosis groups, based on Modified Rankin Scale (mRS) after 3-6 months.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!