Immune challenges demand the gearing up of basal hematopoiesis to combat infection. Little is known about how during development, this switch is achieved to take care of the insult. Here, we show that the hematopoietic niche of the larval lymph gland of senses immune challenge and reacts to it quickly through the nuclear factor-κB (NF-κB), Relish, a component of the immune deficiency (Imd) pathway. During development, Relish is triggered by ecdysone signaling in the hematopoietic niche to maintain the blood progenitors. Loss of Relish causes an alteration in the cytoskeletal architecture of the niche cells in a Jun Kinase-dependent manner, resulting in the trapping of Hh implicated in progenitor maintenance. Notably, during infection, downregulation of Relish in the niche tilts the maintenance program toward precocious differentiation, thereby bolstering the cellular arm of the immune response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363268PMC
http://dx.doi.org/10.7554/eLife.67158DOI Listing

Publication Analysis

Top Keywords

hematopoietic niche
8
relish
5
niche
5
relish plays
4
plays dynamic
4
dynamic role
4
role niche
4
niche modulate
4
modulate blood
4
blood progenitor
4

Similar Publications

Guided monocyte fate to FRβ/CD163 S1 macrophage antagonises atopic dermatitis via fibroblastic matrices in mouse hypodermis.

Cell Mol Life Sci

December 2024

Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.

Macrophages are versatile myeloid leukocytes with flexible cellular states to perform diverse tissue functions beyond immunity. This plasticity is however often hijacked by diseases to promote pathology. Scanning kinetics of macrophage states by single-cell transcriptomics and flow cytometry, we observed atopic dermatitis drastically exhausted a resident subtype S1.

View Article and Find Full Text PDF

Neuroblastoma-derived hypoxic extracellular vesicles promote metastatic dissemination in a zebrafish model.

PLoS One

December 2024

Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy.

The zebrafish (Danio rerio) is a valuable model organism for studying human biology due to its easy genetic manipulation and small size. It is optically transparent and shares genetic similarities with humans, making it ideal for studying developmental processes, diseases, and drug screening via imaging-based approaches. Solid malignant tumors often contain hypoxic areas that stimulate the release of extracellular vesicles (EVs), lipid-bound structures released by cells into the extracellular space, that facilitate short- and long-range intercellular communication and metastatization.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) reside in a milieu that supports their functions, differentiation, and survival. This niche consists of several types of cells, including mesenchymal stem/stromal cells, endothelial cells, osteoblasts, megakaryocytes, macrophages, adipocytes, lymphoid cells, and nerve fibers. The interactions between these cells and HSCs have a role in HSC fate.

View Article and Find Full Text PDF

Overview of the Different Classes of Small RNAs During B-Cell Development.

Methods Mol Biol

December 2024

Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.

B lymphocytes (B cells) are a type of white blood cell that play an essential role in the adaptive immune response. They are derived from pluripotent hematopoietic stem cells and undergo several developmental stages in the bone marrow and secondary lymphoid organs to become effector cells. B cells can act as antigen-presenting cells, secrete cytokines, generate immunological memory as memory B cells, and produce and secrete high-affinity antibodies as plasma B cells.

View Article and Find Full Text PDF

Bone is a common and debilitating site for metastatic cancer cell expansion. Skeletal metastasis is a multistage process, with primary stages of circulating tumour cells, progressing to a dormant state in vasculature and bone marrow niches, followed by tumorigenic reactivation, proliferation, and finally bone destruction. The frequency of bone metastasis is reconciled in Paget's "seed and soil" hypothesis, where a conducive microenvironment (bone niche) is essential for cancer cell colonisation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!