Accurate Removal of Trace 17β-Estradiol and Estrogenic Activity in Blended Systems under a Photoelectrocatalytic Circulating Flow.

Environ Sci Technol

School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China.

Published: September 2021

Trace 17β-estradiol (E2) is persistent against advanced treatment when blended with higher concentrations of low-toxicity organics, thus wasting energy. A circulating-flow selective photoelectrocatalysis (CF-SPEC) system is established with a selective E2-TiO-NR photoanode, accurately reducing 1 μg L E2 to less than 0.1 ng L along with eliminating estrogenic activity even when blended with natural organic matter (NOM) at a thousand times higher concentration. Such high efficiency is derived from the augmented selectivity and activity of E2-TiO-NRs toward E2 during CF-SPEC. Under a flow, the difference in adsorption capacity between NOM and E2 is further amplified 5.6-fold. Furthermore, the higher initial OH concentration and faster mass transfer jointly endow CF-SPEC with a stronger oxidation capacity. As a result, the removal of E2 increases by 58.7%, and the elimination of estrogenic activity increases 5.8-fold. In addition, deeper mineralization and less homo- and heterocoupling under CF-SPEC are observed, leading to more thorough estrogenic activity removal. Although additional energy is needed to maintain the flow, there is a 55% decrease in energy consumption due to the accurate removal capacity. This work suggests a combination of flow degradation and surface engineering that can be expanded for the selective removal of toxic trace pollutants in blended systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.1c02630DOI Listing

Publication Analysis

Top Keywords

estrogenic activity
16
accurate removal
8
trace 17β-estradiol
8
activity blended
8
blended systems
8
activity
5
removal trace
4
estrogenic
4
17β-estradiol estrogenic
4
blended
4

Similar Publications

Background: Proteasomes degrade intracellular proteins. Different proteasome forms were identified. Proteasome inhibitors are used in cancer therapy, and novel drugs directed to specific proteasome forms are developed.

View Article and Find Full Text PDF

: Fructus (AOF) is a medicinal and edible resource that holds potential to ameliorate hyperuricemia (HUA), yet its mechanism of action warrants further investigation. : We performed network pharmacology, molecular docking, molecular dynamics simulation, and in vitro experiments to investigate the potential action and mechanism of AOF against HUA. : The results indicate that 48 potential anti-HUA targets for 4 components derived from AOF were excavated and predicted through public databases.

View Article and Find Full Text PDF

Preventive Effects of Resistance Training on Hemodynamics and Kidney Mitochondrial Bioenergetic Function in Ovariectomized Rats.

Int J Mol Sci

December 2024

Department of Physiological Sciences, Interinstitutional Post-Graduate Program of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos 13.566-490, SP, Brazil.

Menopause occurs due to the depletion of the ovarian reserve, leading to a progressive decline in estrogen (E2) levels. This decrease in E2 levels increases the risk of developing several diseases and can coexist with chronic kidney disease (CKD). Arterial hypertension (AH) is another condition associated with menopause and may either contribute to or result from CKD.

View Article and Find Full Text PDF
Article Synopsis
  • Ovarian cancer is a major cause of cancer-related deaths in women, with both genetic and epigenetic factors contributing to its development and progression.
  • Estrogen signaling plays a significant role in ovarian cancer, involving estrogen receptors and their regulation of genes related to cell growth and death, influenced by epigenetic changes like histone modifications and DNA methylation.
  • This review summarizes current knowledge on these epigenetic mechanisms and explores the potential of epigenetic therapies as treatment options for ovarian cancer.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!