A qualitative analysis was applied for the determination of trace compounds at the parts per trillion in volume (ppt ) level in the mass spectra of nitrogen of different qualities (5.0 and 6.0) under dry and humid conditions. This qualitative analysis enabled the classification and discovery of hundreds of new ions (e.g., [S ]H species) and artifacts such as parasitic ions and memory effects and their differentiation from real gas impurities. With this analysis, the humidity dependency of all kind of ions in the mass spectrum was determined. Apart from the inorganic artifacts previously discovered, many new organic ions were assigned as instrumental artifacts and new isobaric interferences could be elucidated. From 1140 peaks found in the mass range m/z 0-800, only 660 could be analyzed due to sufficient intensity, from which 463 corresponded to compounds. The number of peaks in nitrogen proton transfer reaction (PTR) spectra was similarly dominated by nonmetallic oxygenated organic compounds (23.5%) and hydrocarbons (24.1%) Regarding only gas impurities, hydrocarbons were the main compound class (50.2%). The highest contribution to the total ion signal for unfiltered nitrogen under dry and humid conditions was from nonmetallic oxygenated compounds. Under dry conditions, nitrogen-containing compounds exhibit the second highest contribution of 89% and 96% for nitrogen 5.0 and 6.0, respectively, whereas under humid conditions, hydrocarbons become the second dominant group with 69% and 86% for nitrogen 5.0 and 6.0, respectively. With the gathered information, a database can be built as a tool for the elucidation of instrumental and intrinsic gas matrix artifacts in PTR mass spectra and, especially in cases, where dilution with inert gases plays a significant role.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jms.4777 | DOI Listing |
Sci Total Environ
January 2025
Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:
The CO adsorption capacity of biochar depends on the type of biomass used and its physicochemical properties; various sorption parameters including temperature, CO concentration, and humidity affect the CO adsorption capacity. Biochar derived from defatted black soldier fly larvae (BSFL) biomass was investigated for direct CO capture and exhibited a hydrophilic/mesoporous structure that contained high concentrations of alkali and alkaline metals (>10 wt%), which contribute to CO chemisorption. The CO adsorption efficiency was higher at 25 °C compared with that at 30 °C and 35 °C, probably due to reduced Brownian motion of CO molecules at lower temperatures.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
To enhance sustainability and resilience against climate change in infrastructure, a quantitative evaluation of both environmental impact and cost is important within a life cycle framework. Climate change effects can lead performance deterioration in bridge components during their operational phase, highlighting the necessity for a risk-based evaluation process aligned with maintenance strategies. This study employs a two-phase life cycle assessments (LCA) framework.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China; School of the Built Environment, University of Reading, Reading RG6 6DB, UK. Electronic address:
Environmental pollutants including ultrafine particulate matter (UFPs) and adverse meteorological conditions pose significant public health impacts, particularly affecting respiratory health. This study aims to elucidate the synergistic effects of cold-humid conditions and UFPs exposure on respiratory health, utilizing Carbon Black Nanoparticles (CB-NPs) as surrogates for UFPs. Through comprehensive lung function tests, histopathological examinations, and biomarker analyses, this research focuses on the modulation of oxidative stress signaling pathways and NF-κB activation.
View Article and Find Full Text PDFLangmuir
January 2025
Univ. Rouen Normandie, Normandie Univ., SMS, UR 3233, F-76000 Rouen, France.
It has been shown that depositing ketoprofen as thin films on glass substrates has a stabilizing effect on the amorphous state of ketoprofen. Polyethylene glycol ( = 6000 g/mol) was mixed with ketoprofen in a wide range of concentrations. Amorphous thin films were prepared by spin coating and subjected to storage conditions with different levels of relative humidity.
View Article and Find Full Text PDFFood Environ Virol
January 2025
Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus are primarily transmitted through droplets or aerosols from patients. The inactivation effects of existing virus control techniques may vary depending on the environmental factors. Therefore, it is important to establish a suitable evaluation system for assessing virus control techniques against airborne viruses for further real-world implementation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!