Spatially and Reversibly Actuating Soft Gel Structure by Harnessing Multimode Elastic Instabilities.

ACS Appl Mater Interfaces

Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K.

Published: August 2021

Autonomous shape transformation is key in developing high-performance soft robotics technology; the search for pronounced actuation mechanisms is an ongoing mission. Here, we present the programmable shape morphing of a three-dimensional (3D) curved gel structure by harnessing multimode mechanical instabilities during free swelling. First of all, the coupling of buckling and creasing occurs at the dedicated region of the gel structure, which is attributed to the edge and surface instabilities resulted from structure-defined spatial nonuniformity of swelling. The subsequent developments of post-buckling morphologies and crease patterns collaboratively drive the structural transformation of the gel part from the "open" state to the "closed" state, thus realizing the function of gripping. By utilizing the multi-stimuli-responsive nature of the hydrogel, we recover the swollen gel structure to its initial state, enabling reproducible and cyclic shape evolution. The described soft gel structure capable of shape transformation brings a variety of advantages, such as easy to fabricate, large strain transformation, efficient actuation, and high strength-to-weight ratio, and is anticipated to provide guidance for future applications in soft robotics, flexible electronics, offshore engineering, and healthcare products.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c10431DOI Listing

Publication Analysis

Top Keywords

gel structure
20
soft gel
8
structure harnessing
8
harnessing multimode
8
shape transformation
8
soft robotics
8
gel
6
structure
5
spatially reversibly
4
reversibly actuating
4

Similar Publications

Colloidal gels, ubiquitous in industrial applications, can undergo reversible solid-to-liquid transitions. Recent work demonstrates that adding surface roughness to primary particles enhances the toughness and influences the self-healing properties of colloidal gels. In the present work, we first use colloidal probe atomic force microscopy (CP-AFM) to assess the quantitative changes in adhesive and frictional forces between thermoresponsive particles as a function of their roughness.

View Article and Find Full Text PDF

Microfluidic-assisted sol-gel preparation of monodisperse mesoporous silica microspheres with controlled size, surface morphology, porosity and stiffness.

Nanoscale

January 2025

National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China.

The controllable synthesis of monodisperse mesoporous silica microspheres with unique physicochemical properties is becoming increasingly important for a variety of applications such as catalysts, chromatography, drug delivery and sensors. Here, we report a facile microfluidic-assisted sol-gel method for the preparation of silica microspheres with precisely controlled properties such as the size of the microspheres, the surface morphology, porosity and stiffness. All these properties can be manipulated by changing specific synthesis parameters, such as changing the microfluidic channels to tune the size of the microdroplets (tens to hundreds of microns), changing the contents of the precursor solution to manipulate the surface morphology (wrinkled to smooth surface) and changing the gelation/annealing conditions to tune the porosity (surface area up to 1021 m g) and stiffness of the microspheres (elastic modulus tunable from 0.

View Article and Find Full Text PDF

An antibacterial, antioxidant and hemostatic hydrogel accelerates infectious wound healing.

J Nanobiotechnology

January 2025

Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.

Hydrogel drug-delivery system that can effectively load antibacterial drugs, realize the in-situ drug release in the microenvironment of wound infection to promote wound healing. In this study, a multifunctional hydrogel drug delivery system (HA@TA-Okra) was constructed through the integration of hyaluronic acid methacrylate (HAMA) matrix with tannic acid (TA) and okra extract. The composition and structural characteristics of HA@TA-Okra system and its unique advantages in the treatment of diverse wounds were systematically evaluated.

View Article and Find Full Text PDF

Glutinous and japonica sorghum can be applied to different production processes by their amylopectin content and starch structure. However, the differences in the fine structure and physiochemistry properties of their starches, as well as their fermentation properties remain unclear. Compared with japonica sorghum, glutinous sorghum has a higher amylopectin content, short amylose chain content, relative crystallinity, and ∆H, but lower setback (SB), and starch granule size.

View Article and Find Full Text PDF

This study developed a W/O/W emulsion gel encapsulating proanthocyanidins from Aronia melanocarpa (Michx.) Elliott (APC) using polyglycerol ricinoleate (PGPR) as the lipophilic emulsifier and sodium caseinate (NaCN)-alginate (Alg) as the hydrophilic emulsifier. The optimal preparation process was established based on particle size, zeta potential, phase separation, centrifugal stability, and microscopic morphology: 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!