This study evaluated the effect of low-molecular weight chitosan on Staphylococcus epidermidis, a common colonizer of joint implants and other prosthetic devices. We have also attempted to elucidate its mechanism of action. Chitosan was found to be effective against both the planktonic and biofilm cells (MIC 35-40 mg/L; MBIC 40-150 mg/L), in contrast to the antibiotics erythromycin and tetracycline with no antibiofilm activity (MBIC not found). In combination, chitosan had an additive effect with antibiotics on suspension growth of S. epidermidis (FICi 0.7-1.0), and the combinatory action caused a complete inhibition of biofilm metabolic activity in some cases. In addition, chitosan caused rapid cellular damage and enhanced antihaemolytic activity of tetracycline in combination towards S. epidermidis biofilm cells. Chitosan efficiently inhibited S. epidermidis growth acting via cell membrane damage, yet the extent of antimicrobial and antibiofilm activities was quite strain-specific. It was proved to be a very efficient antimicrobial agent worth further examination as a potent candidate in pharmaceutical research. Apart from antimicrobial activity, it also acted as antivirulence enhancing agent which is a very promising strategy for alternative infectious diseases treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12223-021-00898-6DOI Listing

Publication Analysis

Top Keywords

biofilm cells
12
low-molecular weight
8
weight chitosan
8
staphylococcus epidermidis
8
epidermidis biofilm
8
chitosan
6
epidermidis
5
chitosan enhances
4
enhances antibacterial
4
antibacterial antibiotics
4

Similar Publications

Periodontal disease is recognized as a chronic multifactorial inflammatory condition initiated by dysbiosis within subgingival plaque biofilms. Antimicrobial peptides exhibit a wide spectrum of antimicrobial action, and thus, provide one of the first lines of host defense against oral pathogens. Aged garlic extract (AGE) is effective for preventing the progression of periodontal disease.

View Article and Find Full Text PDF

Background: Treatment of deep carious lesions poses significant challenges in dentistry, as complete lesion removal risks compromising pulp vitality, while selective removal often reduces the longevity of restorations. Herein, we propose a minimally invasive approach using High-Intensity Focused Ultrasound (HIFU) for microscale removal of carious dentine. Concurrently, HIFU's antimicrobial effects against associated cariogenic biofilms and the corresponding thermal and biological impacts on surrounding tissues were investigated.

View Article and Find Full Text PDF

Are metal-based antibacterial gels a potential alternative for disinfection in contemporary endodontics?

Evid Based Dent

January 2025

Doctoral Research Fellow and Specialty Trainee (Endodontics), School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.

Aims: This study aimed to assess the effectiveness of a novel antimicrobial gel, containing copper and silver nanoparticles, for use in root canal disinfection.

Methods: Copper and silver-based gels were created in-house, using a support network of biocompatible polymers, including polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and polyethylene glycol (PEG). Six experimental groups were created, three containing silver ions and three copper ions, where the PVA, PVP and PEG ratios were also adjusted in each group to test the gel's physical state.

View Article and Find Full Text PDF

Background: Sporobolomyces pararoseus is a well-studied oleaginous red yeast that can synthesize a variety of high value-added bioactive compounds. Biofilm is one of the important biological barriers for microbial cells to resist environmental stresses and maintain stable fermentation process. Here, the effect of acidic conditions on the biosynthesis of biofilms in S.

View Article and Find Full Text PDF

Resistance by bacteria to available antibiotics is a threat to human health, which demands the development of new antibacterial agents. Considering the prevailing conditions, we have developed a library of new naphthalimide-coumarin moieties as broad-spectrum antibacterial agents to fight against awful drug resistance. Preliminary studies indicate that compounds and display excellent antibacterial activity against , exceeding the performance of marketed drug amoxicillin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!