Human cerebral organoid (CO) is a three-dimensional (3D) cell culture system that recapitulates the developing human brain. While CO has proved an invaluable tool for studying neurological disorders in a more clinically relevant matter, there have still been several shortcomings including CO variability and reproducibility as well as lack of or underrepresentation of certain cell types typically found in the brain. As the technology to generate COs has continued to improve, more efficient and streamlined protocols have addressed some of these issues. Here we present a novel scalable and simplified system to generate microglia-containing CO (MCO). We characterize the cell types and dynamic development of MCOs and validate that these MCOs harbor microglia, astrocytes, neurons, and neural stem/progenitor cells, maturing in a manner that reflects human brain development. We introduce a novel technique for the generation of embryoid bodies (EBs) directly from induced pluripotent stem cells (iPSCs) that involves simplified steps of transitioning directly from 3D cultures as well as orbital shaking culture in a standard 6-well culture plate. This allows for the generation of MCOs with an easy-to-use system that is affordable and accessible by any general lab.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8288463PMC
http://dx.doi.org/10.3389/fncel.2021.682272DOI Listing

Publication Analysis

Top Keywords

novel scalable
8
scalable simplified
8
simplified system
8
system generate
8
generate microglia-containing
8
induced pluripotent
8
pluripotent stem
8
stem cells
8
human brain
8
cell types
8

Similar Publications

Predicting drug combination side effects based on a metapath-based heterogeneous graph neural network.

BMC Bioinformatics

January 2025

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China.

In recent years, combined drug screening has played a very important role in modern drug discovery. Generally, synergistic drug combinations are crucial in treatment for many diseases. However, the toxic side effects of drug combinations are probably increased with the increase of drugs numbers, so the accurate prediction of toxic side effects of drug combinations is equally important.

View Article and Find Full Text PDF

Dynamic Reconstruction of Fluid Interface Manipulated by Fluid Balancing Agent for Scalable Efficient Perovskite Solar Cells.

Adv Mater

January 2025

Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.

Laboratory-scale spin-coating techniques are widely employed for fabricating small-size, high-efficiency perovskite solar cells. However, achieving large-area, high-uniformity perovskite films and thus high-efficiency solar cell devices remain challenging due to the complex fluid dynamics and drying behaviors of perovskite precursor solutions during large-area fabrication processes. In this work, a high-quality, pinhole-free, large-area FAPbI perovskite film is successfully obtained via scalable blade-coating technology, assisted by a novel bidirectional Marangoni convection strategy.

View Article and Find Full Text PDF

Van der Waals (vdWs) materials are promising candidates for hetero-integration with silicon photonics toward miniaturization and integration. VdWs materials like molybdenum telluride and black phosphorus, despite being prominent, exhibit air sensitivity, and their room temperature emissions can be significantly broadened by tens of meV. Here, a self-encapsulation strategy is developed to scalably synthesize robust 2D vdWs ErOCl with sub-meV narrow emissions at the telecom C-band.

View Article and Find Full Text PDF

MOANA: Multi-objective ant nesting algorithm for optimization problems.

Heliyon

January 2025

Centre for Artificial Intelligence Research and Optimisation, Torrens University, Brisbane, QLD, 4006, QLD 4006, Austral, Australia.

This paper presents the Multi-Objective Ant Nesting Algorithm (MOANA), a novel extension of the Ant Nesting Algorithm (ANA), specifically designed to address multi-objective optimization problems (MOPs). MOANA incorporates adaptive mechanisms, such as deposition weight parameters, to balance exploration and exploitation, while a polynomial mutation strategy ensures diverse and high-quality solutions. The algorithm is evaluated on standard benchmark datasets, including ZDT functions and the IEEE Congress on Evolutionary Computation (CEC) 2019 multi-modal benchmarks.

View Article and Find Full Text PDF

In recent years, the development of biodegradable, cell-adhesive polymeric implants and minimally invasive surgery has significantly advanced healthcare. These materials exhibit multifunctional properties like self-healing, shape-memory, and cell adhesion, which can be achieved through novel chemical approaches. Engineering of such materials and their scalability using a classical polymer network without complex chemical synthesis and modification has been a great challenge, which potentially can be resolved using biobased dynamic covalent chemistry (DCC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!