Intergranular pressure solution plays a key role as a deformation mechanism during diagenesis and in fault sealing and healing. Here, we present microstructural observations following experiments conducted on quartz aggregates under conditions known to favor pressure solution. We conducted two long term experiments in which a quartz crystal with polished faces of known crystallographic orientation was embedded in a matrix of randomly oriented quartz sand grains. For about two months an effective axial stress of 15 MPa was applied in one experiment, and an effective confining pressure of 28 MPa in the second. Loading occurred at 350 °C in the presence of a silica-saturated aqueous solution. In the first experiment, quartz sand grains in contact with polished quartz prism ([Formula: see text]) faces became ubiquitously truncated against these faces, without indenting or pitting them. By contrast, numerous sand-grain-shaped pits formed in polished pyramidal ([Formula: see text]) and ([Formula: see text]) crystal faces in the second experiment. In addition, four-leaved and (in some cases) three-leafed clover-shaped zones of precipitation formed on these prism faces, in a consistent orientation and pattern around individual pits. The microstructures observed in both experiments were interpreted as evidence for the operation of intergranular pressure solution. The dependence of the observed indentation/truncation microstructures on crystal face orientation can be explained by crystallographic control of stress-induced quartz dissolution kinetics, in line with previously published experimental and petrographic data, or possibly by an effect of contact orientation on the stress-induced driving force for pressure solution. This should be investigated in future experiments, providing data and microstructures which enable further mechanism-based analysis of deformation by pressure solution and the effect of crystallographic control on its kinetics in quartz-rich sands and sandstones.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8295331PMC
http://dx.doi.org/10.1038/s41598-021-94376-1DOI Listing

Publication Analysis

Top Keywords

pressure solution
20
quartz sand
12
[formula text]
12
quartz
8
polished quartz
8
intergranular pressure
8
sand grains
8
crystallographic control
8
pressure
6
solution
6

Similar Publications

The importance of continuous and reliable pulse wave monitoring is constantly being increased in health signal monitoring and disease diagnoses. Flexible pressure sensors with high sensitivity, low hysteresis and fast response time are an effective means for monitoring pulses. Herein, a special wave-shaped layered porous structure of carbonized wood cellulose sponge (CWCS) was constructed based on natural wood (NW).

View Article and Find Full Text PDF

Protein aggregation, a major concern in biopharmaceutical quality control, can be accelerated by various stresses during clinical handling. This study investigated potential aggregation risk factors during dilution process with syringe handling for intravenous administration. Using γ-globulin and IgG solutions as surrogate models of antibody therapeutics, we examined the effects of high sliding speeds and piston operations of the syringe on protein aggregation during saline dilution.

View Article and Find Full Text PDF

One-step high-pressure and high-temperature direct aqueous mineral carbonation of tailings derived from mining of Platinum Group Metals in South Africa requires a fundamental understanding of the reactivity of the most dominant mineral phases, i.e. pyroxene and plagioclase (66 wt.

View Article and Find Full Text PDF

Low-salinity conditions are generally used in land-based cultivation to promote the germination and growth of L. and to improve the restoration effect of seagrass beds. Different salinity conditions lead to morphological and physiological differences.

View Article and Find Full Text PDF

Sleep posture is a key factor in assessing sleep quality, especially for individuals with Obstructive Sleep Apnea (OSA), where the sleeping position directly affects breathing patterns: the side position alleviates symptoms, while the supine position exacerbates them. Accurate detection of sleep posture is essential in assessing and improving sleep quality. Automatic sleep posture detection systems, both wearable and non-wearable, have been developed to assess sleep quality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!