In the present article, we developed a highly sensitive label-free electrochemical immunosensor based on NiFe-layered double hydroxides (LDH)/reduced graphene oxide (rGO)/gold nanoparticles modified glassy carbon electrode for the determination of receptor tyrosine kinase-like orphan receptor (ROR)-1. In this electrochemical immunoassay platform, NiFe-LDH/rGO was used due to great electron mobility, high specific surface area and flexible structures, while Au nanoparticles were prepared and coated on the modified electrodes to improve the detection sensitivity and ROR1 antibody immobilizing (ROR1Ab). The modification procedure was approved by using cyclic voltammetry and differential pulse voltammetry based on the response of peak current to the step by step modifications. Under optimum conditions, the experimental results showed that the immunosensor revealed a sensitive response to ROR1 in the range of 0.01-1 pg mL, and with a lower limit of quantification of 10 attogram/mL (10 ag mL). Furthermore, the designed immunosensor was applied for the analysis of ROR1 in several serum samples of chronic lymphocytic leukemia suffering patients with acceptable results, and it also exhibited good selectivity, reproducibility and stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8295321PMC
http://dx.doi.org/10.1038/s41598-021-94380-5DOI Listing

Publication Analysis

Top Keywords

electrochemical immunosensor
8
ultrasensitive label
4
label free
4
free electrochemical
4
immunosensor
4
immunosensor detection
4
ror1
4
detection ror1
4
ror1 oncofetal
4
oncofetal biomarker
4

Similar Publications

Levels of CA125 are strongly associated with cervical, pancreatic, bowel and breast cancer. However, the common CA125 detection method has the disadvantages of poor repeatability, high cost, easy to be disturbed and poor stability. In this work, a COF based electrochemical immunosensor was developed for the rapid, sensitive and stable detection of CA125.

View Article and Find Full Text PDF

Single-electrode electrochemiluminescence immunosensor for multiplex detection of Aquaporin-4 antibody using metal-organic gels as coreactant.

Biosens Bioelectron

January 2025

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui, 230026, China. Electronic address:

Reliable detection of Aquaporin-4 (AQP4) antibodies is crucial for diagnosing Neuromyelitis Optica spectrum disorder (NMOSD). However, cell-based assays, the most reliable approach, are limited by inadequate instruments. This study reports the use of silver metal-organic gels (Ag-MOGs) as coreactants in a single-electrode electrochemical system (SEES)-based electrochemiluminescence (ECL) immunosensor for multiplex detection of AQP4 antibodies.

View Article and Find Full Text PDF

Carcinoembryonic antigen (CEA) is a broad-spectrum biomarker, and its accurate detection and analysis is important for early clinical diagnosis and treatment. This study aimed to develop a highly sensitive and selective sandwich-type immunosensor based on electrochemical impedance spectroscopy (EIS) for the accurate detection of CEA. A novel composite material, gold nanoparticle/reduced-graphene oxide/graphitic carbon nitride (AuNPs/rGO/g-CN), was synthesized with excellent electrical conductivity and a large specific surface area to immobilize biological probes.

View Article and Find Full Text PDF

Construction of in situ modulated controlled growth of MOF-on-mof impedimetric assembly for the practical minimal level assessment of anti-mullerian hormone.

Biosens Bioelectron

December 2024

Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; Department of Biomedical Science and Environmental Biology, School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan. Electronic address:

Anti-mullerian hormone (AMH) detection receives much attention since it is used as an ideal biomarker for quantitative assessment of ovarian reserve. The present study proposed a first report on the use of MOF-on-MOF as an electrochemical sensor for recognizing AMH in buffer and serum media. The MOF-on-MOF, MIL-88 B@UiO66NH was synthesized by the internal extended growth method (IEGM) involving MIL-88 B on UiO66NH by in situ method for the first time.

View Article and Find Full Text PDF

Early detection of hepatitis C virus (HCV) infection is crucial for eliminating this silent killer, especially in resource-limited settings. HCV core antigen (HCVcAg) represents a promising alternative to the current "gold standard" HCV RNA assays as an active viremia biomarker. Herein, a highly sensitive electrochemical magneto-immunosensor for the HCVcAg was developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!