Reinforcement learning is a fundamental mechanism displayed by many species. However, adaptive behaviour depends not only on learning about actions and outcomes that affect ourselves, but also those that affect others. Using computational reinforcement learning models, we tested whether young (age 18-36) and older (age 60-80, total n = 152) adults learn to gain rewards for themselves, another person (prosocial), or neither individual (control). Detailed model comparison showed that a model with separate learning rates for each recipient best explained behaviour. Young adults learned faster when their actions benefitted themselves, compared to others. Compared to young adults, older adults showed reduced self-relevant learning rates but preserved prosocial learning. Moreover, levels of subclinical self-reported psychopathic traits (including lack of concern for others) were lower in older adults and the core affective-interpersonal component of this measure negatively correlated with prosocial learning. These findings suggest learning to benefit others is preserved across the lifespan with implications for reinforcement learning and theories of healthy ageing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8295324PMC
http://dx.doi.org/10.1038/s41467-021-24576-wDOI Listing

Publication Analysis

Top Keywords

reinforcement learning
16
learning
11
learning rates
8
young adults
8
older adults
8
prosocial learning
8
adults
5
ageing associated
4
associated disrupted
4
reinforcement
4

Similar Publications

Due to the complex and uncertain physics of lightning strike on carbon fiber-reinforced polymer (CFRP) laminates, conventional numerical simulation methods for assessing the residual strength of lightning-damaged CFRP laminates are highly time-consuming and far from pretty. To overcome these challenges, this study proposes a new prediction method for the residual strength of CFRP laminates based on machine learning. A diverse dataset is acquired and augmented from photographs of lightning strike damage areas, C-scan images, mechanical performance data, layup details, and lightning current parameters.

View Article and Find Full Text PDF

Minimizing Delay and Power Consumption at the Edge.

Sensors (Basel)

January 2025

Institute of Theoretical & Applied Informatics, Polish Academy of Sciences (IITiS-PAN), 44-100 Gliwice, Poland.

Edge computing systems must offer low latency at low cost and low power consumption for sensors and other applications, including the IoT, smart vehicles, smart homes, and 6G. Thus, substantial research has been conducted to identify optimum task allocation schemes in this context using non-linear optimization, machine learning, and market-based algorithms. Prior work has mainly focused on two methodologies: (i) formulating non-linear optimizations that lead to NP-hard problems, which are processed via heuristics, and (ii) using AI-based formulations, such as reinforcement learning, that are then tested with simulations.

View Article and Find Full Text PDF

This paper introduces Re-DQN, a deep reinforcement learning-based algorithm for comprehensive coverage path planning in lawn mowing robots. In the fields of smart homes and agricultural automation, lawn mowing robots are rapidly gaining popularity to reduce the demand for manual labor. The algorithm introduces a new exploration mechanism, combined with an intrinsic reward function based on state novelty and a dynamic input structure, effectively enhancing the robot's adaptability and path optimization capabilities in dynamic environments.

View Article and Find Full Text PDF

Unmanned aerial vehicle (UAV)-based wireless sensor networks (WSNs) hold great promise for supporting ground-based sensors due to the mobility of UAVs and the ease of establishing line-of-sight links. UAV-based WSNs equipped with mobile edge computing (MEC) servers effectively mitigate challenges associated with long-distance transmission and the limited coverage of edge base stations (BSs), emerging as a powerful paradigm for both communication and computing services. Furthermore, incorporating simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) as passive relays significantly enhances the propagation environment and service quality of UAV-based WSNs.

View Article and Find Full Text PDF

A communication network integrating multiple modes can effectively support the sustainable development of next-generation wireless communications. Integrated sensing, communication, and power transfer (ISCPT) represents an emerging technological paradigm that not only facilitates information transmission but also enables environmental sensing and wireless power transfer. To achieve optimal beamforming in transmission, it is crucial to satisfy multiple constraints, including quality of service (QoS), radar sensing accuracy, and power transfer efficiency, while ensuring fundamental system performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!