Glioblastoma (GBM), the most malignant tumor of the central nervous system, is marked by its dynamic response to microenvironmental niches. In particular, this cellular plasticity contributes to the development of an immediate resistance during tumor treatment. Novel insights into the developmental trajectory exhibited by GBM show a strong capability to respond to its microenvironment by clonal selection of specific phenotypes. Using the same mechanisms, malignant GBM do develop intrinsic mechanisms to resist chemotherapeutic treatments. This resistance was reported to be sustained by the paracrine and autocrine glutamate signaling via ionotropic and metabotropic receptors. However, the extent to which glutamatergic signaling modulates the chemoresistance and transcriptional profile of the GBM remains unexplored. In this study we aimed to map the manifold effects of glutamate signaling in GBM as the basis to further discover the regulatory role and interactions of specific receptors, within the GBM microenvironment. Our work provides insights into glutamate release dynamics, representing its importance for GBM growth, viability, and migration. Based on newly published multi-omic datasets, we explored the and characterized the functions of different ionotropic and metabotropic glutamate receptors, of which the metabotropic receptor 3 (GRM3) is highlighted through its modulatory role in maintaining the ability of GBM cells to evade standard alkylating chemotherapeutics. We addressed the clinical relevance of GRM3 receptor expression in GBM and provide a proof of concept where we manipulate intrinsic mechanisms of chemoresistance, driving GBM towards chemo-sensitization through GRM3 receptor inhibition. Finally, we validated our findings in our novel human organotypic section-based tumor model, where GBM growth and proliferation was significantly reduced when GRM3 inhibition was combined with temozolomide application. Our findings present a new picture of how glutamate signaling via mGluR3 interacts with the phenotypical GBM transcriptional programs in light of recently published GBM cell-state discoveries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8295384PMC
http://dx.doi.org/10.1038/s41419-021-03937-9DOI Listing

Publication Analysis

Top Keywords

gbm
13
glutamate signaling
12
metabotropic glutamate
8
alkylating chemotherapeutics
8
intrinsic mechanisms
8
ionotropic metabotropic
8
gbm growth
8
grm3 receptor
8
glutamate
6
inhibition metabotropic
4

Similar Publications

Gene Therapy for Glioblastoma Multiforme.

Viruses

January 2025

Surgical Neurology Branch, NINDS, NIH 10 Center Drive, Bethesda, MD 20892, USA.

Glioblastoma multiforme (GBM) is a devastating, aggressive primary brain tumor with poor patient outcomes and a five-year survival of less than 10%. Significant limitations to effective GBM treatment include poor drug delivery across the blood-brain barrier, drug resistance, and complex genetic tumor alterations. Gene therapy uses a mechanism different from other GBM therapies to reduce tumor growth and enhance antitumor immunity.

View Article and Find Full Text PDF

Background/objectives: Glioblastoma multiforme (GBM) is the most common high-grade primary brain cancer in adults. Despite efforts to advance treatment, GBM remains treatment resistant and inevitably progresses after first-line therapy. Induced neural stem cell (iNSC) therapy is a promising, personalized cell therapy approach that has been explored to circumvent challenges associated with the current GBM treatment.

View Article and Find Full Text PDF

Revisiting ABC Transporters and Their Clinical Significance in Glioblastoma.

Pharmaceuticals (Basel)

January 2025

Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia.

: The multiple drug-resistant phenomenon has long since plagued the effectiveness of various chemotherapies used in the treatment of patients with glioblastoma (GBM), which is still incurable to this day. ATP-binding cassette (ABC) transporters function as drug transporters and have been touted to be the main culprits in developing resistance to xenobiotic drugs in GBM. : This review systematically analyzed the efficacy of ABC transporters against various anticancer drugs from 16 studies identified from five databases (PubMed, Medline, Embase, Scopus, and ScienceDirect).

View Article and Find Full Text PDF

Glioblastoma (GBM) is an aggressive brain tumor characterized by extensive metabolic reprogramming that drives tumor growth and therapeutic resistance. Key metabolic pathways, including glycolysis, lactate production, and lipid metabolism, are upregulated to sustain tumor survival in the hypoxic and nutrient-deprived tumor microenvironment (TME), while glutamine and tryptophan metabolism further contribute to the aggressive phenotype of GBM. These metabolic alterations impair immune cell function, leading to exhaustion and stress in CD8+ and CD4+ T cells while favoring immunosuppressive populations such as regulatory T cells (Tregs) and M2-like macrophages.

View Article and Find Full Text PDF

Cervical cancer poses a substantial threat to women's health, underscoring the necessity for effective therapeutic agents with low toxicity that specifically target cancer cells. As cancer progresses, increased glucose consumption causes glucose scarcity in the tumor microenvironment (TME). Consequently, it is imperative to identify pharmacological agents capable of effectively killing cancer cells under conditions of low glucose availability within the TME.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!