Metabolic dysregulation underlies malignant phenotypes attributed to cancer stem cells, such as unlimited proliferation and differentiation blockade. Here, we demonstrate that NAD metabolism enables acute myeloid leukemia (AML) to evade apoptosis, another hallmark of cancer stem cells. We integrated whole-genome CRISPR screening and pan-cancer genetic dependency mapping to identify and as AML dependencies governing NAD biosynthesis. While both and were required for AML, the presence of NAD precursors bypassed the dependence of AML on but not , pointing to as a gatekeeper of NAD biosynthesis. Deletion of reduced nuclear NAD, activated p53, and increased venetoclax sensitivity. Conversely, increased NAD biosynthesis promoted venetoclax resistance. Unlike leukemia stem cells (LSCs) in both murine and human AML xenograft models, was dispensable for hematopoietic stem cells and hematopoiesis. Our findings identify NMNAT1 as a previously unidentified therapeutic target that maintains NAD for AML progression and chemoresistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8294764 | PMC |
http://dx.doi.org/10.1126/sciadv.abf3895 | DOI Listing |
Sci Rep
January 2025
Renal Division, Department of Medicine, Universidade Federal de São Paulo, Rua Pedro de Toledo, 781, São Paulo, SP, 04039-032, Brazil.
Partial stenosis of the renal artery causes renovascular hypertension (RVH) and is accompanied by chronic renal ischemia, resulting in irreversible kidney damage. Revascularization constitutes the most efficient therapy for normalizing blood pressure (BP) and has significant benefits for renal function; however, the tissue damage caused by chronic hypoxia is not fully reversed. Mesenchymal stem cells (MSCs) have produced discrete results in minimizing RVH and renal tissue and functional improvements since the obstruction persists.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
RAF protein kinases are major RAS effectors that function by phosphorylating MEK. Although all three RAF isoforms share a conserved RAS binding domain and bind to GTP-loaded RAS, only ARAF uniquely enhances RAS activity. Here we uncovered the molecular basis of ARAF in regulating RAS activation.
View Article and Find Full Text PDFCurr Top Dev Biol
January 2025
School of Molecular Biosciences, Washington State University, Pullman, Washington, United States. Electronic address:
For mammalian spermatogenesis to proceed normally, it is essential that the population of testicular progenitor cells, A undifferentiated spermatogonia (A), undergoes differentiation during the A to A1 transition that occurs at the onset of spermatogenesis. The commitment of the A population to differentiation and leaving a quiescent, stem-like state gives rise to all the spermatozoa produced across the lifespan of an individual, and ultimately determines male fertility. The action of all-trans retinoic acid (atRA) on the A population is the determining factor that induces this change.
View Article and Find Full Text PDFTransplant Cell Ther
January 2025
Chair of Hematology, University of Milan; Division of Hematology and Stem Cell Transplantation, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano.
Background: Anti-CD19 CAR T-cells have revolutionized outcomes in relapsed/refractory large B-cell lymphomas. Long-term follow-up underscored the role of hematological toxicity in non-relapse mortality, largely driven by infections, leading to the development of the CAR-HEMATOTOX (HT) score for predicting neutropenia. The European scientific community (EHA/EBMT) later reached a consensus, defining a new entity: immune effector cell-associated hematotoxicity (ICAHT).
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
Background: The hypobaric hypoxic atmosphere can cause adverse reactions or sickness. The purpose of this study was to explore the preventive effect and mechanism of human umbilical cord mesenchymal stem cells (hUC-MSCs) on acute pathological injury in mice exposed to high-altitude.
Methods: We pretreated C57BL/6 mice with hUC-MSCs via the tail vein injection, and then the mice were subjected to hypobaric hypoxic conditions for five days.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!