Using the statistical approach, this work seeks to optimize the process parameters to boost the generation of an organic solvent-tolerant lipase by SH6. The main parameters influencing the enzyme production were identified by using Plackett-Burman's screening design. Among the test variables, only tryptone (25 g/L), malt extract (2.5 g/L), NaCl (10 g/L) and pH (7.0) contributed positively to enzyme production. Then, the crude lipase was immobilized by adsorption on CaCO at pH 10. A maximum immobilization efficiency of 82% was obtained by incubating 280 mg of enzyme with CaCO (1 g) during 30 min. The immobilized lipase was more stable toward organic solvents than the free enzyme. It retained about 90% of its original activity in the presence of ethanol and methanol. After that, the immobilized enzyme was used for biodiesel production by transesterification process between waste oil and methanol or ethanol during 24 h at 30 °C. Our results show that the lipase can be utilized efficiently in biodiesel industry. Likewise, we have demonstrated that the immobilized enzyme may be implicated in the biodegradability of waste grease; the maximum conversion yield into fatty acids obtained after 12 h at 30 °C, was 57%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10826068.2021.1920034 | DOI Listing |
ACS Synth Biol
January 2025
The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
Methyl ketones, key building blocks widely used in diverse industrial applications, largely depend on oil-derived chemical methods for their production. Here, we investigated biobased production alternatives for short-chain ketones, adapting the solvent-tolerant soil bacterium as a host for ketone biosynthesis either by whole-cell biocatalysis or using engineered minicells, chromosome-free bacterial vesicles. Organic acids (acetate, propanoate and butanoate) were selected as the main carbon substrate to drive the biosynthesis of acetone, butanone and 2-pentanone.
View Article and Find Full Text PDFBiomed Chromatogr
February 2025
Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India.
Enantioseparation and enantiorecognition are crucial in the pharmaceutical analysis of chiral substances, impacting safety, efficacy, and regulatory compliance. Enantioseparation refers to the process of separating enantiomers from a mixture, typically achieved through chromatography techniques like HPLC and SFC. In contrast, enantiorecognition involves the identification of enantiomers based on their interaction with a chiral selector without the need for separation.
View Article and Find Full Text PDFBioresour Technol
December 2024
CINDEFI (Institute of Applied Biotechnology) and INIFTA (UNLP - CCT La Plata - CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 50 y 115 (B1900AJL) La Plata, Argentina; Department of Biomedical Engineering, School of Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA. Electronic address:
Int J Biol Macromol
November 2024
Academy of National Food and Strategic Reserves Administration, No 11 Baiwanzhuang Avenue, Xicheng District, Beijing 100037, PR China. Electronic address:
BMC Biotechnol
July 2024
Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, 70000, Morocco.
This study used conservative one variable-at-a-time study and statistical surface response methods to increase the yields of an extracellular thermostable protease secreted by a newly identified thermophilic Bacillus subtilis BSP strain. Using conventional optimization techniques, physical parameters in submerged fermentation were adjusted at the shake flask level to reach 184 U/mL. These physicochemical parameters were further optimized by statistical surface response methodology using Box Behnken design, and the protease yield increased to 295 U/mL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!