After fecal microbiota transplantation (FMT) to treat infection (CDI), cognitive improvement is noticeable, suggesting an essential association between the gut microbiome and neural function. Although it is known that the gut microbiome is linked with cognitive function, whether FMT may lead to cognitive improvement in patients with neurodegenerative disorders remains to be elucidated. We present the case of a 90-year-old woman with Alzheimer's dementia and severe CDI who underwent FMT. Cognitive function testing (Mini-Mental State Examination, Montreal Cognitive Assessment, and Clinical Dementia Rating assessment) was performed one month before FMT and one week and one month after FMT. We collected the patients' fecal samples before FMT and 3 weeks after FMT to compare the microbiota composition. The 16S rRNA gene amplicons were analyzed using the QIIME2 platform (version 2020.2) and the Phyloseq R package. The linear discriminant analysis effect size was performed to determine the taxonomic difference between pre- and post-FMT. Functional biomarker analysis using the Kruskal-Wallis test was performed between the pre- and post-FMT. The cognitive function tests after FMT showed an improvement compared to the tests before the procedure. FMT changed the microbiota composition in recipient feces. We found that the genera were reported to be associated with cognitive function. In addition, short-chain fatty acids were found to be significantly different between before and after FMT. This finding suggests the presence of an association between the gut microbiome and cognitive function. Further, it emphasizes the need for clinical awareness regarding the effect of FMT on the brain-gut-microbiome axis and its potential as a therapy for patients with dementia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03007995.2021.1957807 | DOI Listing |
J Mol Neurosci
January 2025
Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
Alzheimer's disease (AD) is a neurodegenerative disease with no effective treatment, often preceded by mild cognitive impairment (MCI). Multimodal imaging genetics integrates imaging and genetic data to gain a deeper understanding of disease progression and individual variations. This study focuses on exploring the mechanisms that drive the transition from normal cognition to MCI and ultimately to AD.
View Article and Find Full Text PDFMol Psychiatry
January 2025
Department of Neurology, Hospital Universitario Clínico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain.
Patients with post-COVID condition (PCC) present with diverse symptoms which persist at long-term after SARS-CoV-2 infection. Among these symptoms, cognitive impairment is one of the most prevalent and has been related to brain structural and functional changes. The underlying mechanisms of these cognitive and brain alterations remain elusive but neuroinflammation and immune mechanisms have been majorly considered.
View Article and Find Full Text PDFHypertens Res
January 2025
Department of Intensive Care Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
Nature
January 2025
Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
The ventrolateral pallial (VLp) excitatory neurons in the claustro-amygdalar complex and piriform cortex (PIR; which forms part of the palaeocortex) form reciprocal connections with the prefrontal cortex (PFC), integrating cognitive and sensory information that results in adaptive behaviours. Early-life disruptions in these circuits are linked to neuropsychiatric disorders, highlighting the importance of understanding their development. Here we reveal that the transcription factors SOX4, SOX11 and TFAP2D have a pivotal role in the development, identity and PFC connectivity of these excitatory neurons.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
The alteration of neurovascular coupling (NVC), where acute localized blood flow increases following neural activity, plays a key role in several neurovascular processes including aging and neurodegeneration. While not equivalent to NVC, the coupling between simultaneously measured cerebral blood flow (CBF) with arterial spin labeling (ASL) and blood oxygenation dependent (BOLD) signals, can also be affected. Moreover, the acquisition of BOLD data allows the assessment of resting state (RS) fMRI metrics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!