AI Article Synopsis

  • - The catalytic cycle of a heme-DNAzyme involves a key intermediate, an iron(IV)oxo compound, created through the breaking of an O-O bond from a hydroperoxo ligand, similar to the functioning of heme enzymes like horseradish peroxidase (HRP).
  • - Research included testing chemically modified hemes with different electron densities and parallel-stranded G-quadruplex DNAs to study how these factors impact the catalytic activity of the heme-DNAzyme.
  • - Results showed that the DNAzyme's activity can be boosted by increasing the electron density of the heme and utilizing surrounding adenine bases, clarifying the relationship between the heme structure and its functional performance.

Article Abstract

The catalytic cycle of a peroxidase-mimicking heme-DNAzyme involves an iron(IV)oxo porphyrin π-cation radical intermediate known as compound formed through heterolytic O-O bond cleavage of an Fe-bound hydroperoxo ligand (Fe-OOH) in compound , like that of a heme enzyme such as horseradish peroxidase (HRP). Peroxidase assaying of complexes composed of chemically modified hemes possessing various electron densities of the heme iron atom (ρ) and parallel-stranded tetrameric G-quadruplex DNAs of oligonucleotides d(TTAGGG), d(TTAGGGT), and d(TTAGGGA) was performed to elucidate the effects of the heme electronic structure and local heme environment on the catalytic activity of the heme-DNAzyme. The study revealed that the DNAzyme activity is enhanced through an increase in the ρ and general base catalysis of the adenine base adjacent to the heme, which are reminiscent of the "push" and "pull" mechanisms in the catalytic cycle of HRP, respectively, and that the activity of the heme-DNAzyme can be independently controlled through the heme electronic structure and local heme environment. These findings allow a deeper understanding of the structure-function relationship of the peroxidase-mimicking heme-DNAzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c01179DOI Listing

Publication Analysis

Top Keywords

heme electronic
12
electronic structure
12
structure local
12
local heme
12
heme environment
12
peroxidase-mimicking heme-dnazyme
12
effects heme
8
heme
8
environment catalytic
8
catalytic activity
8

Similar Publications

Unveiling the interplay between soluble guanylate cyclase activation and redox signalling in stroke pathophysiology and treatment.

Biomed Pharmacother

January 2025

Department of Neurology and Center for Translational Neuro, and Behavioural Sciences (C-TNBS), Department of Neurology, University Hospital Essen, Essen 45147, Germany; Department of Pharmacology & Personalised Medicine, MeHNS, Faculty of Health, Medicine & Life Science, Maastricht University, Maastricht, ER 6229, the Netherlands. Electronic address:

Soluble guanylate cyclase (sGC) stands as a pivotal regulatory element in intracellular signalling pathways, mediating the formation of cyclic guanosine monophosphate (cGMP) and impacting diverse physiological processes across tissues. Increased formation of reactive oxygen species (ROS) is widely recognized to modulate cGMP signalling. Indeed, oxidatively damaged, and therefore inactive sGC, contributes to poor vascular reactivity and more severe neurological damage upon stroke.

View Article and Find Full Text PDF

Performance, kinetics, and mechanism of 1,2,3-trimethylbenzene biodegradation by a newly isolated marine microalga.

J Environ Manage

January 2025

Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.

Article Synopsis
  • Recent marine pollution concerns revolve around the accidental spills of toxic C9 aromatics, particularly 1,2,3-trimethylbenzene (1,2,3-TMB), due to its high toxicity and resistance to degradation.
  • A marine diatom, Chaetoceros sp. QG-1, was isolated from Quangang, China, and demonstrated the highest degradation efficiency of 1,2,3-TMB at a concentration of 5 mg/L.
  • The study identified the degradation process, where 1,2,3-TMB is converted into less harmful compounds, involving key enzymes like 2OG Fe(II) oxygenase, thus supporting bioremediation efforts in polluted marine environments
View Article and Find Full Text PDF

Molecular dynamics simulations to decipher the hotspots at the allosteric site of human 5-lipoxygenase.

J Mol Graph Model

January 2025

Molecular Modeling and Protein Engineering Lab, Biology Division, Department of Humanities and Sciences, Indian Institute of Petroleum and Energy, Visakhapatnam, Andhra Pradesh, 530003, India. Electronic address:

Human 5-lipoxygenase (LOX) is a non-heme, Fe-containing LOX which catalyses the conversion of arachidonic acid (AA) to leukotriene A (LTA). LTA is subsequently converted to cysteinyl-LTs and LTB that cause bronchoconstriction and act as chemotactic and chemokinetic agent on human leukocytes, respectively. Leukotrienes play significant roles in inflammation in asthma, cardiovascular diseases, allergic rhinitis, atopic dermatitis, inflammatory bowel disease, rheumatoid arthritis, psoriasis and many more.

View Article and Find Full Text PDF

Hippocampal reelin and GAD67 gene expression and methylation in the GFAP.HMOX1 mouse model of schizophrenia.

Biochim Biophys Acta Mol Cell Res

January 2025

Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada. Electronic address:

Schizophrenia is a complex neuropsychiatric disorder featuring enhanced brain oxidative stress and deficient reelin protein. GFAP.HMOX1 mice that overexpress heme oxygenase-1 (HO-1) in astrocytes manifest a schizophrenia-like neurochemical, neuropathological and behavioral phenotype including brain oxidative stress and reelin downregulation.

View Article and Find Full Text PDF

Detection of microRNA-21 based on smartly designed ratiometric electrochemical sensor and dual-signal amplification.

Anal Chim Acta

January 2025

Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Medicine, Linyi University, Linyi, China. Electronic address:

MicroRNA (miRNA) serves as an effective and viable biomarker for early diagnosis and monitoring of cancer disorders. It is highly expressed in tumor cells, including lung cancer, liver cancer and lymphoma. Herein, we propose a ratiometric electrochemical sensor for ultrasensitive detection of miRNA-21 using dual signal amplification, hybridization chain reaction and Exo III assisted-amplification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!