A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Efficient photocatalytic degradation of hazardous pollutants by homemade kitchen blender novel technique via 2D-material of few-layer MXene nanosheets. | LitMetric

To attain elevated class MXene (TiCTx) through a homemade kitchen blender method, high shear mechanical exfoliation is highly required for the efficient delimitations of MXene nanosheets from bulk MAX (TiAlC). We examine large-scale industrial productions of the MXene nanosheets, where combing the predicted 2D materials using a blender is a first-time novel approach with the delaminating solvent as a dimethyl sulfoxide (DMSO). And also manually created layered MXene systems (handmade) delaminating MXene sheets (MX-H) was furthermore employed for environmental dye-degradations applications. The materials characterizations was done for both the bulk MAX, MX-H and the MX-B. Additionally, the surface morphological studies like scanning electron microscopy (SEM) were investigated for both MX-H and MX-B as-prepared samples. SEM images indicated the high shear blander technique formations highly expanded/delaminated MXene (TiCTx) nanosheets compared to MX-H samples. FTIR technique is employed to identify -OH, C-H, C-O stretching vibrations for both materials. Raman spectroscopy analysis of MX-H and MX-B revealed 484.80 cm Raman shift assigned to E1g phonon mode of (Ti, C, O). The ultraviolet UV visible absorption spectra explored pure and catalyst added Methylene Blue (MB) dye stock solution using annular type photoreactor with visible light source of 300 W. The comparatives of MAX, MX-H and MX-B samples was investigated as photocatalytic activity, The blender made (MX-B) sample revealed 98% of efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.130984DOI Listing

Publication Analysis

Top Keywords

mx-h mx-b
16
mxene nanosheets
12
homemade kitchen
8
kitchen blender
8
mxene tictx
8
high shear
8
bulk max
8
max mx-h
8
mxene
7
mx-h
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!