Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Copper-based nanoparticles (Cu-based NPs) have been gaining wide attention in agricultural applications due to their diverse characteristics and multipurpose properties. This includes their use in agrochemicals for efficient delivery and controlled release of pesticides and fertilizers. However, their excessive usage over a long duration of time could pose potential risks to the soil system. Further, they are known for their well-established anti-microbial effects which could be detrimental to soil health, particularly to the activities of soil microbes, which play a significant role in the functioning of terrestrial and agroecosystems. Thus, there is a great need to clearly understand these uniquely nanospecific properties of Cu-based NPs along with mode-of-action, effect on soil processes, soil organisms, and plants. This paper examines the current literature on Cu-based NPs to provide a systematic understanding of their potential impacts on the soil-plant environment. It explores their rising application and usage in agriculture along with their possible interaction with various soil components and the potential factors influencing it. It further investigates their uptake, translocation, and distribution in plants in various exposure media. It summarises that the dissolution, biotransformation, and bioavailability of Cu-based NPs in the soil are governed by several factors, like soil type, soil pH, and organic matter content. Further, environmental factors, time duration, and presence of other pollutants could also influence their biotransformation and soil toxicity. Finally, this review seeks to provide future perspectives that need attention for investigation purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2021.130940 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!