A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterizing baseline legacy chemical contamination in urban estuaries for disaster-research through systematic evidence mapping: A case study. | LitMetric

Characterizing baseline legacy chemical contamination in urban estuaries for disaster-research through systematic evidence mapping: A case study.

Chemosphere

Texas A&M University Veterinary Integrative Biosciences, 4458 TAMU, College Station, TX, 77843, USA; Texas A&M University Interdisciplinary Faculty of Toxicology (IFT), College Station, TX, 77843, USA. Electronic address:

Published: October 2021

Natural disasters such as floods and hurricanes impact urbanized estuarine environments. Some impacts pose potential environmental and public health risks because of legacy or emerging chemical contamination. However, characterizing the baseline spatial and temporal distribution of environmental chemical contamination before disasters remains a challenge. To address this gap, we propose using systematic evidence mapping (SEM) in order to comprehensively integrate available data from diverse sources. We demonstrate this approach is useful for tracking and clarifying legacy chemical contamination reporting in an urban estuary system. We conducted a systematic search of peer-reviewed articles, government monitoring data, and grey literature. Inclusion/exclusion criteria are used as defined by a Condition, Context, Population (CoCoPop) statement for literature from 1990 to 2019. Most of the peer-reviewed articles reported dioxins/furans or mercury within the Houston Ship Channel (HSC); there was limited reporting of other organics and metals. In contrast, monitoring data from two agencies included 89-280 individual chemicals on a near-annual basis. Regionally, peer-reviewed articles tended to record metals in Lower Galveston Bay (GB) but organics in the HSC, while the agency databases spanned a wider spatial range in GB/HSC. This SEM has shown that chemical data from peer-reviewed and grey literature articles are sparse and inconsistent. Even with inclusion of government monitoring data, full spatial and temporal distributions of baseline levels of legacy chemicals are difficult to determine. There is thus a need to expand the chemical, spatial, and temporal coverage of sampling and environmental data reporting in GB/HSC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8298901PMC
http://dx.doi.org/10.1016/j.chemosphere.2021.130925DOI Listing

Publication Analysis

Top Keywords

chemical contamination
16
spatial temporal
12
peer-reviewed articles
12
monitoring data
12
characterizing baseline
8
legacy chemical
8
systematic evidence
8
evidence mapping
8
government monitoring
8
grey literature
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!