Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The purpose of the presented research is estimation of the performance characteristics of the economic total-body Jagiellonian-PET system (TB-J-PET) constructed from plastic scintillators. The characteristics are estimated according to the NEMA NU-2-2018 standards utilizing the GATE package. The simulated detector consists of 24 modules, each built out of 32 plastic scintillator strips (each with cross section of 6 mm times 30 mm and length of 140 or 200 cm) arranged in two layers in regular 24-sided polygon circumscribing a circle with the diameter of 78.6 cm. For the TB-J-PET with an axial field-of-view (AFOV) of 200 cm, a spatial resolutions (SRs) of 3.7 mm (transversal) and 4.9 mm (axial) are achieved. The noise equivalent count rate (NECR) peak of 630 kcps is expected at 30 kBq cc. Activity concentration and the sensitivity at the center amounts to 38 cps kBq. The scatter fraction (SF) is estimated to 36.2 %. The values of SF and SR are comparable to those obtained for the state-of-the-art clinical PET scanners and the first total-body tomographs: uExplorer and PennPET. With respect to the standard PET systems with AFOV in the range from 16 to 26 cm, the TB-J-PET is characterized by an increase in NECR approximately by factor of 4 and by the increase of the whole-body sensitivity by factor of 12.6 to 38. The time-of-flight resolution for the TB-J-PET is expected to be at the level of CRT = 240 ps full width at half maximum. For the TB-J-PET with an AFOV of 140 cm, an image quality of the reconstructed images of a NEMA IEC phantom was presented with a contrast recovery coefficient and a background variability parameters. The increase of the whole-body sensitivity and NECR estimated for the TB-J-PET with respect to current commercial PET systems makes the TB-J-PET a promising cost-effective solution for the broad clinical applications of total-body PET scanners. TB-J-PET may constitute an economic alternative for the crystal TB-PET scanners, since plastic scintillators are much cheaper than BGO or LYSO crystals and axial arrangement of the strips significantly reduces the costs of readout electronics and SiPMs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/ac16bd | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!