Molecular probes for selective detection of cysteine cathepsins.

Org Biomol Chem

Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Dr, Gainesville, FL 32610, USA.

Published: July 2021

Cysteine cathepsins are proteases critical in physiopathological processes and show potential as targets or biomarkers for diseases and medical conditions. The 11 members of the cathepsin family are redundant in some cases but remarkably independent of others, demanding the development of both pan-cathepsin targeting tools as well as probes that are selective for specific cathepsins with little off-target activity. This review addresses the diverse design strategies that have been employed to accomplish this tailored selectivity among cysteine cathepsin targets and the imaging modalities incorporated. The power of these diverse tools is contextualized by briefly highlighting the nature of a few prominent cysteine cathepsins, their involvement in select diseases, and the application of cathepsin imaging probes in research spanning basic biochemical studies to clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8295534PMC
http://dx.doi.org/10.1039/d1ob00225bDOI Listing

Publication Analysis

Top Keywords

cysteine cathepsins
12
probes selective
8
molecular probes
4
selective detection
4
cysteine
4
detection cysteine
4
cathepsins
4
cathepsins cysteine
4
cathepsins proteases
4
proteases critical
4

Similar Publications

Fungal evasion of immunity involves blocking the cathepsin-mediated cleavage maturation of the danger-sensing protease.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.

Entomopathogenic fungi play a critical role in regulating insect populations, and representative species from the and genera have been developed as eco-friendly biocontrol agents for managing agricultural insect pests. Relative to the advances in understanding antifungal immune responses in , knowledge of how fungi evade insect immune defenses remains limited. In this study, we report the identification and characterization of a virulence-required effector Fkp1 in .

View Article and Find Full Text PDF

The main protease (M) of SARS-CoV-2 is a key drug target for the development of antiviral therapeutics. Here, we designed and synthesized a series of small-molecule peptidomimetics with various cysteine-reactive electrophiles. Several compounds were identified as potent SARS-CoV-2 M inhibitors, including compounds (IC = 0.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic inflammatory disease affecting the central nervous system (CNS). There is a significant delay in diagnosing MS as the symptoms and tests overlap with other diseases. Blood-based biomarkers, which quantify fragments of proteins involved in MS pathophysiology, have the potential as diagnostic biomarkers.

View Article and Find Full Text PDF

Discovery of a Potent Triazole-Based Reversible Targeted Covalent Inhibitor of Cruzipain.

ACS Med Chem Lett

January 2025

Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven 3000, Belgium.

Cruzipain (CZP) is an essential cysteine protease of , the etiological agent of Chagas disease, and a promising druggable target. To date, no CZP inhibitors have reached clinical use, with research efforts mostly hampered by insufficient potency, limited target selectivity or lack of bioactivity translation from the isolated enzyme to the parasite in cellular environments. In this study, we report the design of , a 1,2,3-triazole-based targeted covalent inhibitor with nanomolar potency (IC = 28 nM) and null inhibition of human cathepsin L.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) have advanced as a mainstay among the most promising cancer therapeutics, offering enhanced antigen targeting and encompassing wide diversity in their linker and payload components. Small-molecule inhibitors of tubulin polymerization have found success as payloads in FDA approved ADCs and represent further promise in next-generation, pre-clinical and developmental ADCs. Unique dual-mechanism payloads (previously designed and synthesized in our laboratories) function as both potent antiproliferative agents and promising vascular disrupting agents capable of imparting selective and effective damage to tumor-associated microvessels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!