Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Dioscorea deltoidea var. deltoidea (Dioscoreaceae) is a valuable endangered plant of great medicinal and economic importance due to the presence of the bioactive compound diosgenin. In the present study, response surface methodology (RSM) and artificial neural network (ANN) modelling have been implemented to evaluate the diosgenin content from D. deltoidea. In addition, different extraction parameters have been also optimized and developed.
Materials And Methods: Firstly, Plackett-Burman design (PBD) was applied for screening the significant variables among the selected extraction parameters i.e. solvent composition, solid: solvent ratio, particle size, time, temperature, pH and extraction cycles on diosgenin yield. Among seven tested parameters only four parameters (particle size, solid: solvent ratio, time and temperature) were found to exert significant effect on the diosgenin extraction. Moreover, Box-Behnken design (BBD) was employed to optimize the significant extraction parameters for maximum diosgenin yield.
Results: The most suitable condition for diosgenin extraction was found to be solid: solvent ratio (1:45), particle size (1.25 mm), time (45 min) and temperature (45°C). The maximum experimental yield of diosgenin (1.204% dry weight) was observed close to the predicted value (1.202% dry weight) on the basis of the chosen optimal extraction factors. The developed mathematical model fitted well with experimental data for diosgenin extraction.
Conclusions: Experimental validation revealed that a well trained ANN model has superior performance compared to a RSM model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8294507 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0253617 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!