Most cetaceans are born with vibrissae but they can be lost or reduced in adulthood, especially in odontocetes. Despite this, some species of odontocetes have been found to have functioning vibrissal follicles (including the follicle itself and any remaining vibrissal hair shaft) that play a role in mechanoreception, proprioception and electroreception. This reveals a greater diversity of vibrissal function in odontocetes than in any other mammalian group. However, we know very little about vibrissal follicle form and function across the Cetacea. Here, we qualitatively describe the gross vibrissal follicle anatomy of fetuses of three species of cetaceans, including two odontocetes: Atlantic white-sided dolphin (Lagenorhynchus acutus), harbour porpoise (Phocoena phocoena), and one mysticete: minke whale (Balaenoptera acutorostrata), and compared our findings to previous anatomical descriptions. All three species had few, short vibrissae contained within a relatively simple, single-part follicle, lacking in muscles. However, we observed differences in vibrissal number, follicle size and shape, and innervation distribution between the species. While all three species had nerve fibers around the follicles, the vibrissal follicles of Balaenoptera acutorostrata were innervated by a deep vibrissal nerve, and the nerve fibers of the odontocetes studied were looser and more branched. For example, in Lagenorhynchus acutus, branches of nerve fibers travelled parallel to the follicle, and innervated more superficial areas, rather than just the base. Our anatomical descriptions lend support to the observation that vibrissal morphology is diverse in cetaceans, and is worth further investigation to fully explore links between form and function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ar.24714 | DOI Listing |
Nat Commun
January 2025
Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
Understanding vibrissal transduction has advanced by serial sectioning and identified afferent recordings, but afferent mapping onto the complex, encapsulated follicle remains unclear. Here, we reveal male rat C2 vibrissa follicle innervation through synchrotron X-ray phase contrast tomograms. Morphological analysis identified 5% superficial, ~32 % unmyelinated and 63% myelinated deep vibrissal nerve axons.
View Article and Find Full Text PDFExp Cell Res
May 2024
Department of Otorhinolaryngology-Head and Neck Surgery, Nantong University Wuxi Clinical College Affiliated Wuxi No.2 people's Hospital, Wuxi, Jiangsu, China. Electronic address:
Background: Acellular nerve allografts (ANAs) have been successfully applied to bridge facial nerve defects, and transplantation of stem cells may enhance the regenerative results. Up to now, application of hair follicle epidermal neural crest stem cell-derived Schwann cell-like cells (EPI-NCSC-SCLCs) combined with ANAs for bridging facial nerve defects has not been reported.
Methods: The effect of ANAs laden with green fluorescent protein (GFP)-labeled EPI-NCSC-SCLCs (ANA + cells) on bridging rat facial nerve trunk defects (5-mm-long) was detected by functional and morphological examination, as compared with autografts and ANAs, respectively.
Adv Mar Biol
November 2023
Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain; CEMMA Coordinadora para o Estudo dos Mamíferos Mariños. Rúa Ceán, Nigrán, Spain.
Anat Rec (Hoboken)
February 2024
Department of Brain Sciences, The Weizmann Institute of Science, Rehovot, Israel.
Rats' whisking motion and objects' palpation produce tactile signals sensed by mechanoreceptors at the vibrissal follicles. Rats adjust their whisking patterns to target information type, flow, and resolution, adapting to their behavioral needs and the changing environment. This coordination requires control over the activity of the mystacial pad's intrinsic and extrinsic muscles.
View Article and Find Full Text PDFIBRO Neurosci Rep
December 2022
Abbott Laboratories, 1921 Hurd Dr, Irving, TX 75038, USA.
Introduction: Camphor is a popular compound for therapeutic and cosmetic use with a distinctive odour, and somatosensory warming and cooling properties. The mechanisms for its action remain unclear.
Objective: The current study examined the effects of two enantiomers of camphor and related monoterpenoid compounds on mechanoreceptors.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!