Inflammation is a common pathophysiological process as well as a clinical threat that occurs in various diseases worldwide. It is well-documented that nuclear factor-κB (NF-κB) and mitogen-activated protein kinase pathways are involved in inflammatory reactions to microbial infections in lipopolysaccharide (LPS)-activated macrophages. The deubiquitinase ubiquitin carboxyl-terminal hydrolase-L1 (UCHL1) has been reported as an oncoprotein to promote the growth and progression of cancer cells. However, the regulatory mechanism of UCHL1 in inflammation is currently unclear. Here, we aimed to assess the effects of UCHL1 on LPS-associated inflammatory response in vitro and in vivo by enzyme-linked immunosorbent assay, quantitative reverse-transcription polymerase chain reaction, and western blot analysis. This study identified that inhibition or knockdown of UCHL1 decreased the amounts of the key pro-inflammatory cytokines, including interleukin-6 and tumor necrosis factor-α in macrophages. Additionally, inhibition of UCHL1 suppressed LPS-induced extracellular signal-regulated protein kinase 1/2 phosphorylation and NF-κB translocation by regulating the inhibitor of NF-κB. Mechanically, UCHL1 interacts with IκBα protein in THP-1. Meanwhile, inhibition of UCHL1 blocked the LPS-induced degradation of IκBα through the ubiquitin-proteasome system. Moreover, in vivo assay showed that suppression of UCHL1 notably reduced the LPS-induced animal death and release of pro-inflammatory cytokines. Overall, the current findings uncover that UCHL1 functions as a crucial regulator for inflammatory response via reversing the degradation of IκBα, representing a potential target for the treatment of inflammatory diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbin.11662 | DOI Listing |
Brain Sci
December 2024
Canadian Forces Environmental Medicine Establishment, Toronto, ON M3K 2C9, Canada.
Background/objectives: Military aviators can be exposed to extreme physiological stressors, including decompression stress, G-forces, as well as intermittent hypoxia and/or hyperoxia, which may contribute to neurobiological dysfunction/damage. This study aimed to investigate the levels of neurological biomarkers in military aviators to assess the potential risk of long-term brain injury and neurodegeneration.
Methods: This cross-sectional study involved 48 Canadian Armed Forces (CAF) aviators and 48 non-aviator CAF controls.
Sci Rep
January 2025
Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA.
Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology.
View Article and Find Full Text PDFAm J Emerg Med
December 2024
Warfighter Readiness, Performance, and Brain Health Project Management Office (WRPBH PMO), US Army Medical Materiel Development Activity (USAMMDA), 1430 Veterans Drive, Fort Detrick, MD 21702, USA.
BMC Nephrol
December 2024
Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
Background: Immunoglobulin A nephropathy (IgAN) is a major cause of chronic kidney disease (CKD) and kidney failure. Necroptosis is a novel type of programmed cell death that has been proved to be associated with the pathogenesis of infectious disease, cardiovascular disease, neurological disorders and so on. However, the role of necroptosis in IgAN remains unclear.
View Article and Find Full Text PDFJ Orthop Surg Res
December 2024
Department of Orthopedics, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China.
The aim of this research was to investigate dysregulated pivotal genes in individuals with lumbar disc herniation (LDH) to identify potential diagnostic biomarkers and treatment targets for LDH. Key aging-related genes in LDH were identified through multiple methods. Two dysregulated key genes (FPR1 and UCHL1) were finally identified, showing high diagnostic value in both training and external validation cohorts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!