Dynamic computer simulations of electrophoresis: 2010-2020.

Electrophoresis

RAM Software Solutions, Tucson, Arizona, USA.

Published: January 2022

The transport of components in liquid media under the influence of an applied electric field can be described with the continuity equation. It represents a nonlinear conservation law that is based upon the balance laws of continuous transport processes and can be solved in time and space numerically. This procedure is referred to as dynamic computer simulation. Since its inception four decades ago, the state of dynamic computer simulation software and its use has progressed significantly. Dynamic models are the most versatile tools to explore the fundamentals of electrokinetic separations and provide insights into the behavior of buffer systems and sample components of all electrophoretic separation methods, including moving boundary electrophoresis, CZE, CGE, ITP, IEF, EKC, ACE, and CEC. This article is a continuation of previous reviews (Electrophoresis 2009, 30, S16-S26 and Electrophoresis 2010, 31, 726-754) and summarizes the progress and achievements made during the 2010 to 2020 time period in which some of the existing dynamic simulators were extended and new simulation packages were developed. This review presents the basics and extensions of the three most used one-dimensional simulators, provides a survey of new one-dimensional simulators, outlines an overview of multi-dimensional models, and mentions models that were briefly reported in the literature. A comprehensive discussion of simulation applications and achievements of the 2010 to 2020 time period is also included.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9292373PMC
http://dx.doi.org/10.1002/elps.202100191DOI Listing

Publication Analysis

Top Keywords

dynamic computer
12
computer simulation
8
achievements 2010
8
2010 2020
8
2020 time
8
time period
8
one-dimensional simulators
8
dynamic
5
computer simulations
4
electrophoresis
4

Similar Publications

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

Ethylene glycol dinitrate (EGDN) is a nitrate ester explosive widely used in military ordnance and missile systems. This study investigates the decomposition dynamics of the EGDN cation using a comprehensive approach that combines femtosecond time-resolved mass spectrometry (FTRMS) experiments with electronic structure and molecular dynamics computations. We identify three distinct dissociation time scales for the metastable EGDN cation of approximately 40-60 fs, 340-450 fs, and >2 ps.

View Article and Find Full Text PDF

Achieving high ionic conductivity and stable performance at low temperatures remains a significant challenge in sodium-metal batteries (SMBs). In this study, we propose a novel electrolyte design strategy that elucidates the solvation structure-function relationship within mixed solvent systems. A mixture of diglyme and 1,3-dioxolane was developed to optimize the solvation structure towards superior low-temperature electrolyte.

View Article and Find Full Text PDF

Data-Driven Equation-Free Dynamics Applied to Many-Protein Complexes: The Microtubule Tip Relaxation.

Biophys J

January 2025

Department of Chemistry, Chicago Center for Theoretical Chemistry, The James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States. Electronic address:

Microtubules (MTs) constitute the largest components of the eukaryotic cytoskeleton and play crucial roles in various cellular processes, including mitosis and intracellular transport. The property allowing MTs to cater to such diverse roles is attributed to dynamic instability, which is coupled to the hydrolysis of GTP (guanosine-5'-triphosphate) to GDP (guanosine-5'-diphosphate) within the β-tubulin monomers. Understanding the equilibrium dynamics and the structural features of both GDP- and GTP-complexed MT tips, especially at an all-atom level, remains challenging for both experimental and computational methods because of their dynamic nature and the prohibitive computational demands of simulating large, many-protein systems.

View Article and Find Full Text PDF

Background: In prehospital emergency care, providers face significant challenges in making informed decisions due to factors such as limited cognitive support, high-stress environments, and lack of experience with certain patient conditions. Effective Clinical Decision Support Systems (CDSS) have great potential to alleviate these challenges. However, such systems have not yet been widely adopted in real-world practice and have been found to cause workflow disruptions and usability issues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!