Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Small airways with inner diameters less than 2 mm are sites of major airflow limitations in patients with chronic obstructive pulmonary disease (COPD) and asthma. The purpose of this study is to investigate the limitations for accurate assessment of small airway dimensions using both high-resolution CT (HRCT) and conventional normal-resolution CT at low dose levels.
Methods: To model the normal human airways from the 3rd to 20th generations, a cylindrical polyurethane phantom with 14 airway tubes of inner diameters (ID) ranging from 0.3 to 3.4 mm and wall thicknesses (WT) ranging from 0.15 to 1.6 mm was placed within an Anthropomorphic QRM-Thorax phantom. The Aquilion Precision (Canon Medical Systems Corporation) HRCT scanner was used to acquire images at 80, 100, and 120 kV using high resolution mode (HR, 0.25 mm × 160 detector configuration) and normal-resolution (NR) mode (0.5 mm × 80 detector configuration). The HR data were reconstructed using a 1024 × 1024 matrix (0.22 × 0.22 × 0.25 mm voxel size) and the NR data were reconstructed using a 512 × 512 matrix (0.43 × 0.43 × 0.50 mm). Two reconstruction algorithms (filtered back projection; FBP and an adaptive iterative dose reduction 3D algorithm; AIDR 3D) and three reconstruction kernels (FC30, FC52, and FC56) were investigated. The dose values ranged from 0.2 to 6.2 mGy. A refined automated full-width half-maximum (FWHM) method was used for the measurement of airway dimensions, where the density profiles were computed by radial oversampling using a polar coordinate system. Both ID and WT were compared to the known dimensions using a regression model, and the root-mean-square error (RMSE) and average error were computed across all 14 airway tubes.
Results: The results indicate that the ID can be measured within a 15% error down to approximately 0.8 and 2.0 mm using the HR and NR modes, respectively. The overall RMSE (and average error) of ID measurements for HR and NR were 0.10 mm (-0.70%) and 0.31 mm (-2.63%), respectively. The RMSE (and average error) of WT measurements using HR and NR were 0.10 mm (23.27%) and 0.27 mm (53.56%), respectively. The WT measurement using HR yielded a factor of two improvement in accuracy as compared to NR.
Conclusions: High-resolution CT can provide more accurate measurements of airway dimensions as compared with NR CT, potentially improving quantitative assessment of pathologies such as COPD and asthma. The HR mode acquired and reconstructed with AIDR3D and the FC52 kernel provides most accurate measurement of airway dimensions. Low-dose HR measurements at dose level above 0.9 mGy can provide improved accuracy on both inner diameters and wall thicknesses compared to full dose NR airway phantom measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.15103 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!