Purpose: Inherited variants in the cancer susceptibility genes, BRCA1 and BRCA2 account for up to 5% of breast cancers. Multiple gene expression studies have analysed gene expression patterns that maybe associated with BRCA12 pathogenic variant status; however, results from these studies lack consensus. These studies have focused on the differences in population means to identified genes associated with BRCA1/2-carriers with little consideration for gene expression variability, which is also under genetic control and is a feature of cellular function.

Methods: We measured differential gene expression variability in three of the largest familial breast cancer datasets and a 2116 breast cancer meta-cohort. Additionally, we used RNA in situ hybridisation to confirm expression variability of EN1 in an independent cohort of more than 500 breast tumours.

Results: BRCA1-associated breast tumours exhibited a 22.8% (95% CI 22.3-23.2) increase in transcriptome-wide gene expression variability compared to BRCAx tumours. Additionally, 40 genes were associated with BRCA1-related breast cancers that had ChIP-seq data suggestive of enriched EZH2 binding. Of these, two genes (EN1 and IGF2BP3) were significantly variable in both BRCA1-associated and basal-like breast tumours. RNA in situ analysis of EN1 supported a significant (p = 6.3 × 10) increase in expression variability in BRCA1-associated breast tumours.

Conclusion: Our novel results describe a state of increased gene expression variability in BRCA1-related and basal-like breast tumours. Furthermore, genes with increased variability may be driven by changes in DNA occupancy of epigenetic effectors. The variation in gene expression is replicable and led to the identification of novel associations between genes and disease phenotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8357684PMC
http://dx.doi.org/10.1007/s10549-021-06328-yDOI Listing

Publication Analysis

Top Keywords

gene expression
32
expression variability
28
breast tumours
16
basal-like breast
12
expression
10
breast
10
increased gene
8
variability
8
variability brca1-associated
8
brca1-associated basal-like
8

Similar Publications

Appraisal of the evidence linking hereditary α-tryptasemia with mast cell disorders, hypermobility and dysautonomia.

Allergy Asthma Proc

January 2025

From the Division of Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, California and.

Since its first description more than a decade ago, our understanding of the clinical impact of hereditary alpha-tryptasemia has continued to evolve. First considered to be a genetic disorder with a subset of patients having a syndromic presentation composed of connective tissue abnormalities, symptoms of autonomic dysfunction, and findings of mast cell activation, we now know that hereditary alpha-tryptasemia is a common genetic trait and modifier of mast cell-mediated reactions. More recent studies have shown some previously held associations with congenital hypermobility and postural orthostatic tachycardia syndrome (POTS) to be lacking, and illuminated previously unappreciated associations with clonal and nonclonal mast cell disorders.

View Article and Find Full Text PDF

Introduction: DU145 and LNCaP are classic prostate cancer cell lines. Characterizing their baseline transcriptomics profiles (without any intervention) can offer insights into baseline genetic features and oncogenic pathways that should be considered while interpreting findings after various experimental interventions such as exogenous gene transfection or drug treatment.

Methods: LNCaP and DU145 cell lines were cultured under normal conditions, followed by RNA extraction, cDNA conversion, library preparation, and RNA sequencing using the Illumina NovaSeq platform.

View Article and Find Full Text PDF

Background: Prostate cancer is the most common diagnosed tumor and the fifth cancer related death among men in Europe. Although several genetic alterations such as ERG-TMPRSS2 fusion, MYC amplification, PTEN deletion and mutations in p53 and BRCA2 genes play a key role in the pathogenesis of prostate cancer, specific gene alteration signature that could distinguish indolent from aggressive prostate cancer or may aid in patient stratification for prognosis and/or clinical management of patients with prostate cancer is still missing. Therefore, here, by a multi-omics approach we describe a prostate cancer carrying the fusion of TMPRSS2 with ERG gene and deletion of 16q chromosome arm.

View Article and Find Full Text PDF

Background: Primary luminal breast cancer cells lose their identity rapidly in standard tissue culture, which is problematic for testing hormone interventions and molecular pathways specific to the luminal subtype. Breast cancer organoids are thought to retain tumor characteristics better, but long-term viability of luminal-subtype cases is a persistent challenge. Our goal was to adapt short-term organoids of luminal breast cancer for parallel testing of genetic and pharmacologic perturbations.

View Article and Find Full Text PDF

Reassessing the roles of oxidative DNA base lesion 8-oxoGua and repair enzyme OGG1 in tumorigenesis.

J Biomed Sci

January 2025

Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, 130024, China.

ROS cause multiple forms of DNA damage, and among them, 8-oxoguanine (8-oxoGua), an oxidized product of guanine, is one of the most abundant. If left unrepaired, 8-oxoGua may pair with A instead of C, leading to a mutation of G: C to T: A during DNA replication. 8-Oxoguanine DNA glycosylase 1 (OGG1) is a tailored repair enzyme that recognizes 8-oxoGua in DNA duplex and initiates the base excision repair (BER) pathway to remove the lesion and ensure the fidelity of the genome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!