The use of low-NOx compressed natural gas (CNG) medium-duty vehicles (MDVs) and heavy-duty vehicles (HDVs) has the potential to significantly reduce NO emissions and yield improvements in regional air quality. However, the extent of air quality improvement depends on many factors including future levels of vehicle deployment, the evolution of emissions from other sources, and meteorology. An analysis of the impacts requires modeling the atmosphere to account for both primary and secondary air pollutants, and the use of health impact assessment tools to map air quality changes into quantifiable metrics of human health. Here, we quantify and compare the air quality and health impacts associated with the deployment of low-NO CNG engines to power future MDV and HDV fleets in California relative to both a business-as-usual and a more advanced fleet composition. The results project that reductions in summer ground-level ozone could reach 13 ppb when compared to a baseline fleet of diesel and gasoline HDV and MDV and could reach 6 ppb when compared to a cleaner fleet that includes some zero-emission vehicles and fuels. Similarly, for all CNG cases considered reductions in PM are predicted to range from 1.2 ug/m to 2.7 ug/m for a summer episode and from 3.1 ug/m to approximately 7.8 ug/m for a winter episode. These improvements yield short-term health benefits equivalent to $47 to $56 million in summer and $38 to $43 million in winter during episodes conducive to poor air quality. Additionally, the use of zero emission vehicle options such as battery electric and hydrogen fuel cell trucks could achieve approximately 25% to 31% higher benefits for an equivalent fleet penetration level due to the additional emission reductions achieved.: The paper provides a quantitative estimate of the air quality and human health benefits that can be achieved through the use of novel compressed natural gas engines (i.e., low-NO CNG) in medium- and heavy-duty vehicles and provide a comparison with zero emission vehicles. Thus, our findings will provide support for policy development seeking to transform the trucking sector to meet clean air and climate goals given the current struggle policymakers have with selecting between alternative truck technologies due to variance in factors like cost and technical maturity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10962247.2021.1957727 | DOI Listing |
Nanomicro Lett
January 2025
College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China.
Fluorinated gases (F-gases) play a vital role in the chemical industry and in the fields of air conditioning, refrigeration, health care, and organic synthesis. However, the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances. Developing porous materials for the energy-efficient capture, separation, and recovery of F-gases is highly desired.
View Article and Find Full Text PDFCurr Allergy Asthma Rep
January 2025
Division of Immunology, Department of Medicine, Boston Children's Hospital, Boston, MA, USA.
Purpose Of Review: This manuscript reviews the impact of important indoor environmental exposures on pediatric asthma, with a focus on recent literature in the field.
Recent Findings: Studies continue to support an association between numerous indoor aeroallergens and air pollutants found in homes and schools and increased asthma morbidity overall. Several recent home and school intervention studies have shown promise, though results have been overall mixed.
ACS Biomater Sci Eng
January 2025
Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
Effective storage and utilization of limited donor corneal resources are in high demand to alleviate the shortage of donor corneal tissue. Here, we designed a static air-lifted organ culture system equipped with a protective coverage membrane, namely, an air-lifted OC-P system, to provide a biomimetic physiological environment for full-thickness corneal preservation. The air-lifted OC-P system features a unique collagen-based protective coverage membrane that can offer a moist, oxygen-rich environment for corneal epithelium, produce an appropriate intraocular pressure onto the cornea by gravity, and facilitate the maintenance of the organ culture medium level for nutrient supply during corneal preservation.
View Article and Find Full Text PDFBiol Aujourdhui
January 2025
Univ. Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 9 avenue du Professeur Léon Bernard, F-35000 Rennes, France.
The health effects of air pollution have been recognized for many years. However, this area of research continues to receive increasing attention from both the scientific community and civil society. The aim of this article is to review the main epidemiological findings on the effects of outdoor air pollution.
View Article and Find Full Text PDFBackground: Household air pollution is a major contributor to cardiovascular disease burden in women in Sub-Saharan Africa. However, little is known about exposures during pregnancy or the effect of clean cooking interventions on postpartum blood pressure trajectories.
Methods: The Ghana Randomized Air Pollution and Health Study (GRAPHS) randomized 1414 non-smoking women in the first and second trimesters to liquefied petroleum gas (LPG) or improved biomass stoves - vs control (traditional three-stone open fire).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!