Improved Genome Packaging Efficiency of Adeno-associated Virus Vectors Using Rep Hybrids.

J Virol

Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Floridagrid.15276.37, Gainesville, Florida, USA.

Published: September 2021

Recombinant adeno-associated viruses (rAAVs) are one of the most commonly used vectors for a variety of gene therapy applications. In the last 2 decades, research focused primarily on the characterization and isolation of new , genes resulting in hundreds of natural and engineered AAV capsid variants, while the gene, the other major AAV open reading frame, has been less studied. This is due to the fact that the gene from AAV serotype 2 (AAV2) enables the single-stranded DNA packaging of recombinant genomes into most AAV serotype and engineered capsids. However, a major by-product of all vector productions is empty AAV capsids, lacking the encapsidated vector genome, especially for non-AAV2 vectors. Despite the packaging process being considered the rate-limiting step for rAAV production, none of the genes from the other AAV serotypes have been characterized for their packaging efficiency. Thus, in this study AAV2 was replaced with the gene of a select number of AAV serotypes. However, this led to a lowering of capsid protein expression, relative to the standard AAV2- system. In further experiments the 3' end of the AAV2 gene was reintroduced to promote increased capsid expression and a series of chimeras between the different AAV Rep proteins were generated and characterized for their vector genome packaging ability. The utilization of these novel Rep hybrids increased the percentage of genome containing (full) capsids approximately 2- to -4-fold for all of the non-AAV2 serotypes tested. Thus, these Rep chimeras could revolutionize rAAV production. A major by-product of all adeno-associated virus (AAV) vector production systems are "empty" capsids, void of the desired therapeutic gene, and thus do not provide any curative benefit for the treatment of the targeted disease. In fact, empty capsids can potentially elicit additional immune responses gene therapies if not removed by additional purification steps. Thus, there is a need to increase the genome packaging efficiency and reduce the number of empty capsids from AAV biologics. The novel Rep hybrids from different AAV serotypes described in this study are capable of reducing the percentage of empty capsids in all tested AAV serotypes and improve overall yields of genome-containing AAV capsids at the same time. They can likely be integrated easily into existing AAV manufacturing protocols to optimize the production of the generated AAV gene therapy products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8428402PMC
http://dx.doi.org/10.1128/JVI.00773-21DOI Listing

Publication Analysis

Top Keywords

aav serotypes
16
aav
15
genome packaging
12
packaging efficiency
12
rep hybrids
12
empty capsids
12
adeno-associated virus
8
gene
8
gene therapy
8
aav serotype
8

Similar Publications

Adeno-associated virus (AAV) has emerged as a powerful and effective tool for the delivery of exogenous genes into various cells or tissues. To improve the gene delivery efficiency, as well as the safety and specificity of AAV's cell-targeting capabilities, extensive investigations have been conducted into its molecular biological characteristics, including capsid structure, cellular tropism, and the mechanisms underlying its entry, replication, DNA packaging, and capsid assembly. Significant differences exist between human and non-human primate AAVs regarding tissue targeting and transduction efficiency.

View Article and Find Full Text PDF

Recombinant adeno-associated virus (AAV) is one of the main viral vector-based gene therapy platforms. AAV is a virus consisting of a ≈25 nm diameter capsid with a ≈4.7 kb cargo capacity.

View Article and Find Full Text PDF

Adeno-associated viruses (AAVs) are the most extensively researched viral vectors for gene therapy globally. The AAV viral protein 1 (VP1) N-terminus controls the capsid's ability to translocate into the cell nucleus; however, the exact mechanism of this process is largely unknown. In this study, we sought to elucidate the precise interactions between AAV serotype 6 (AAV6), a promising vector for immune disorders, and host transport receptors responsible for vector nuclear localization.

View Article and Find Full Text PDF

To better understand host cell protein (HCP) retention in adeno-associated virus (AAV) downstream processes, sequential window acquisition of all theoretical fragment ion mass spectra (SWATH-MS) was used to quantitatively profile residual HCPs for four AAV serotypes (AAV2, -5, -8, and -9) produced with HEK293 cells and purified using POROS CaptureSelect AAVX affinity chromatography. A broad range of residual HCPs were detected in affinity eluates after purification (  = 2,746), and HCP profiles showed universally present species (  = 1,117) and species unique to one or more AAV serotype. SWATH-MS revealed that HCP persistence was dominated by high-abundance conserved species (HACS), which appeared across all serotype conditions studied.

View Article and Find Full Text PDF

Implementing a robust platform analytical procedure for measuring adeno-associated virus vector genome titer.

Mol Ther Methods Clin Dev

December 2024

Pfizer, Analytical Research and Development, 875 Chesterfield Pkwy. West, Chesterfield, MO 63017, USA.

The vector genome (vg) titer measurement, which is used to control patient dosing and ensure control over drug product manufacturing, is essential for the development of recombinant adeno-associated virus (AAV) gene therapy products. While qPCR and droplet digital PCR technologies are commonly implemented for measuring vg titer, chromatographic techniques with UV detectors represent promising future approaches, in line with traditional biotherapeutics. Here, we introduce a novel vg titer measurement approach using size-exclusion high-performance liquid chromatography with UV detection, which achieves excellent method precision (<2% relative SD), demonstrates linearity across a range of concentrations and varied particle content, is stability indicating, and can be bridged with existing vg titer methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!