Recent studies on proton conductivity using pristine MOFs and their composite materials have established an outstanding area of research owing to their potential applications for the development of high performance solid state proton conductors (SSPCs) and proton exchange membranes (PEMs) in fuel cells (FCs). MOFs, as crystalline organic and inorganic hybrid materials, provide a large number of degrees of freedom in their framework composition, coordination environment, and chemically functionalized pores for the targeted design of improved proton carriers, functioning over a wide range of temperature and humidity conditions. Herein, our efforts have been emphasized on fundamental principles and different design strategies to achieve enhanced proton conductivity with appropriate examples. We also have discussed the modification mechanism of MOF-composite materials and mixed matrix membranes for commercial applications in FCs. Thus, this review aims to direct readers' attention towards the design strategies and structure-property relationship for proton transport in MOFs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1dt01116bDOI Listing

Publication Analysis

Top Keywords

proton conductivity
12
proton
8
proton conductors
8
improved proton
8
design strategies
8
metal-organic frameworks
4
frameworks proton
4
conductors strategies
4
strategies improved
4
conductivity studies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!