AI Article Synopsis

  • The development of collimating technologies in pencil beam scanning (PBS) proton therapy aims to enhance treatment accuracy by improving target conformity and minimizing exposure to healthy tissues.
  • Recent literature categorizes collimators into three types: per-field apertures, multileaf collimators (MLCs), and sliding-bar collimators, focusing on design and planning methodologies.
  • Evidence suggests that collimation, particularly in low-energy treatments, significantly improves target conformity but also poses some risks, such as increased secondary neutron production, indicating that careful consideration is needed when implementing collimation in PBS.

Article Abstract

Purpose: The development of collimating technologies has become a recent focus in pencil beam scanning (PBS) proton therapy to improve the target conformity and healthy tissue sparing through field-specific or energy-layer-specific collimation. Given the growing popularity of collimators for low-energy treatments, the purpose of this work was to summarize the recent literature that has focused on the efficacy of collimators for PBS and highlight the development of clinical and preclinical collimators.

Materials And Methods: The collimators presented in this work were organized into 3 categories: per-field apertures, multileaf collimators (MLCs), and sliding-bar collimators. For each case, the system design and planning methodologies are summarized and intercompared from their existing literature. Energy-specific collimation is still a new paradigm in PBS and the 2 specific collimators tailored toward PBS are presented including the dynamic collimation system (DCS) and the Mevion Adaptive Aperture.

Results: Collimation during PBS can improve the target conformity and associated healthy tissue and critical structure avoidance. Between energy-specific collimators and static apertures, static apertures have the poorest dose conformity owing to collimating only the largest projection of a target in the beam's eye view but still provide an improvement over uncollimated treatments. While an external collimator increases secondary neutron production, the benefit of collimating the primary beam appears to outweigh the risk. The greatest benefit has been observed for low- energy treatment sites.

Conclusion: The consensus from current literature supports the use of external collimators in PBS under certain conditions, namely low-energy treatments or where the nominal spot size is large. While many recent studies paint a supportive picture, it is also important to understand the limitations of collimation in PBS that are specific to each collimator type. The emergence and paradigm of energy-specific collimation holds many promises for PBS proton therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270095PMC
http://dx.doi.org/10.14338/IJPT-20-00039.1DOI Listing

Publication Analysis

Top Keywords

proton therapy
12
pencil beam
8
beam scanning
8
pbs
8
pbs proton
8
improve target
8
target conformity
8
healthy tissue
8
collimators
8
low-energy treatments
8

Similar Publications

Nanocatalytic medicine for treating cancer requires effective, versatile and novel tools and approaches to significantly improve the therapeutic efficiency for the interactions of (non-)enzymatic reactions. However, it is necessary to develop (non-)enzymatic nanotechnologies capable of selectively killing tumour cells without harming normal cells. Their therapeutic characteristics should be the adaption of tumours' extra- and intracellular environment to being specifically active.

View Article and Find Full Text PDF

Objective: Globally, in 2022, 30,871 children were diagnosed with CNS-tumors. Many have been treated with radiotherapy, and a significant number suffer from chronic late effects, including fatigue. This study aims to investigate previous research on the impact of cancer-related fatigue for neurocognitive function that can be related to radiotherapy in patients who have undergone primary brain radiotherapy before the age of 18.

View Article and Find Full Text PDF

Local Control of Conjunctival Malignant Melanoma by Proton Beam Therapy in a Patient With No Metastasis in Six Years From to Nodular Lesions.

J Med Cases

January 2025

Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama City 700-8558, Japan.

Conjunctival malignant melanoma is extremely rare, with no standard of care established at moment. Here we report a 65-year-old woman, as a hepatitis B virus (HBV) carrier, who presented concurrently a liver mass and lower bulbar conjunctival pigmented lesions in the right eye. Needle liver biopsy and excisional conjunctival biopsy showed hepatocellular carcinoma and conjunctival malignant melanoma , respectively.

View Article and Find Full Text PDF

Purpose: Despite its high cost-effectiveness, radiation oncology faces the greatest prior authorization (PA) burden of any medical specialty. Insurance denials and resulting treatment delays have been documented across several treatment modalities, including stereotactic body radiation, intensity modulated radiation, and proton therapy. Although insurance companies suggest that PA is intended to control health care spending and ensure the implementation of evidence-based practice, the number of radiation treatment plans reviewed by the PA process that result in changes is quite low.

View Article and Find Full Text PDF

Background/aim: Metastatic prostate cancer is a recalcitrant disease. Our laboratory has previously treated prostate-cancer patients with methionine restriction effected by a low methionine diet and oral recombinant methioninase (o-rMETase), both alone and in combination with other agents. The present case is a 66-year-old patient who had a radical prostatectomy in 2019 with a Gleason score 3+3 and 3+4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!