Accurate risk assessment of high-risk patients is essential in clinical practice. However, there is no practical method to predict or monitor the prognosis of patients with ST-segment elevation myocardial infarction (STEMI) complicated by hyperuricemia. We aimed to evaluate the performance of different machine learning models for the prediction of 1-year mortality in STEMI patients with hyperuricemia. We compared five machine learning models (logistic regression, -nearest neighbor, CatBoost, random forest, and XGBoost) with the traditional global (GRACE) risk score for acute coronary event registrations. We registered patients aged >18 years diagnosed with STEMI and hyperuricemia at the Affiliated Hospital of Zunyi Medical University between January 2016 and January 2020. Overall, 656 patients were enrolled (average age, 62.5 ± 13.6 years; 83.6%, male). All patients underwent emergency percutaneous coronary intervention. We evaluated the performance of five machine learning classifiers and the GRACE risk model in predicting 1-year mortality. The area under the curve (AUC) of the six models, including the GRACE risk model, ranged from 0.75 to 0.88. Among all the models, CatBoost had the highest predictive accuracy (0.89), AUC (0.87), precision (0.84), and F1 value (0.44). After hybrid sampling technique optimization, CatBoost had the highest accuracy (0.96), AUC (0.99), precision (0.95), and F1 value (0.97). Machine learning algorithms, especially the CatBoost model, can accurately predict the mortality associated with STEMI complicated by hyperuricemia after a 1-year follow-up.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275420PMC
http://dx.doi.org/10.1155/2021/7252280DOI Listing

Publication Analysis

Top Keywords

machine learning
20
1-year mortality
12
grace risk
12
st-segment elevation
8
elevation myocardial
8
myocardial infarction
8
patients hyperuricemia
8
stemi complicated
8
complicated hyperuricemia
8
performance machine
8

Similar Publications

Developing a Sleep Algxorithm to Support a Digital Medicine System: Noninterventional, Observational Sleep Study.

JMIR Ment Health

December 2024

Otsuka Pharmaceutical Development & Commercialization, Inc, 508 Carnegie Center Drive, Princeton, NJ, 08540, United States, 1 609 535 9035.

Background: Sleep-wake patterns are important behavioral biomarkers for patients with serious mental illness (SMI), providing insight into their well-being. The gold standard for monitoring sleep is polysomnography (PSG), which requires a sleep lab facility; however, advances in wearable sensor technology allow for real-world sleep-wake monitoring.

Objective: The goal of this study was to develop a PSG-validated sleep algorithm using accelerometer (ACC) and electrocardiogram (ECG) data from a wearable patch to accurately quantify sleep in a real-world setting.

View Article and Find Full Text PDF

Background: Anxiety and depression represent prevalent yet frequently undetected mental health concerns within the older population. The challenge of identifying these conditions presents an opportunity for artificial intelligence (AI)-driven, remotely available, tools capable of screening and monitoring mental health. A critical criterion for such tools is their cultural adaptability to ensure effectiveness across diverse populations.

View Article and Find Full Text PDF

Predicting phage-host interactions via feature augmentation and regional graph convolution.

Brief Bioinform

November 2024

Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China.

Identifying phage-host interactions (PHIs) is a crucial step in developing phage therapy, which is the promising solution to addressing the issue of antibiotic resistance in superbugs. However, the lifestyle of phages, which strongly depends on their host for life activities, limits their cultivability, making the study of predicting PHIs time-consuming and labor-intensive for traditional wet lab experiments. Although many deep learning (DL) approaches have been applied to PHIs prediction, most DL methods are predominantly based on sequence information, failing to comprehensively model the intricate relationships within PHIs.

View Article and Find Full Text PDF

This scoping review summarizes two emerging electrical impedance technologies: electrical impedance myography (EIM) and electrical impedance tomography (EIT). These methods involve injecting a current into tissue and recording the response at different frequencies to understand tissue properties. The review discusses basic methods and trends, particularly the use of electrodes: EIM uses electrodes for either injection or recording, while EIT uses them for both.

View Article and Find Full Text PDF

Objective: To explore whether radiomics analysis of pericoronary adipose tissue (PCAT) captured by coronary computed tomography angiography (CCTA) could discriminate unstable angina (UA) from stable angina (SA).

Methods: In this single-center retrospective case-control study, coronary CT images and clinical data from 240 angina patients were collected and analyzed. Patients with unstable angina ( = 120) were well-matched with those having stable angina ( = 120).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!