A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of Atmospheric Fine Particulate Matter and Its Carrier Microbes on Pulmonary Microecology in Patients with COPD. | LitMetric

Effects of Atmospheric Fine Particulate Matter and Its Carrier Microbes on Pulmonary Microecology in Patients with COPD.

Int J Chron Obstruct Pulmon Dis

State Key Laboratory of Respiratory Disease, National Center for Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangdong, Guangdong Sheng, People's Republic of China.

Published: August 2021

Objective: The aim of this paper was to analyse the influence of atmospheric fine particulate matter (AFPM) and atmospheric microorganisms on the pulmonary microecology of chronic obstructive pulmonary disease (COPD) patients in northeast China.

Methods: Collected bronchoalveolar lavage fluid (BALF) of COPD patients in the high-risk period (group A) and low-risk period (group B) of AFPM inhalation and samples of AFPM in the same time range (group C) were collected. DNA sample sequencing, the bacterial abundance, and diversity bioinformatics of BALFs were performed by methods of Illumina MiSeq™ platform and Mothur and Uclust.

Results: A total of 58 samples were sequenced, including 22 samples from group A, 26 samples from group B and 10 samples from group C. A total of 2,005,790 bacterial sequences and 34,256 bacterial numbers were detected. Group B had the highest bacterial diversity of the three groups. Group B also had the highest bacterial abundance index value. There were differences in the classification of bacterial colonies for the three groups at the genus level. The types of bacteria in group C were more numerous than other groups, and group B was higher than group A, which indicates that there were more bacteria in BALF during the high-risk period of AFPM inhalation. The detection rates of and for group C were significantly higher than group A. The COG and KEGG databases' difference analysis results for the bacterial gene function abundance of group A and group B were 40.7% in group A and 38.9% in group B (R=0.098, P=0.006). The human disease abundance in group A and group B was 1.16% and 1.12%, respectively (P>0.05).

Conclusion: The increase in the concentration of AFPM can increase the diversity and abundance of bacteria in the BALF of stable COPD patients.

Clinical Trial Registration Number: 2020XS04-02.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8286251PMC
http://dx.doi.org/10.2147/COPD.S314265DOI Listing

Publication Analysis

Top Keywords

group
19
samples group
12
atmospheric fine
8
fine particulate
8
particulate matter
8
pulmonary microecology
8
copd patients
8
high-risk period
8
period group
8
afpm inhalation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!