Despite pioneering as the holy grail in photocatalysts, abundant reports have demonstrated that g-CN performs poor photocatalytic activity due to its high recombination rate of photo-induced charge carriers. Many efforts have been conducted to overcome this limitation in which the semiconductor-semiconductor coupling strategies toward heterojunction formation were considered as the easiest but the most effective method. Herein, a one-pot solid-state reaction of thiourea and sodium molybdate as precursors at different temperatures under N gas was applied for preparing composites of MoS/g-CN. The physicochemical characterization of the final products determines the variation in contents of components (MoS and g-CN) via the increase of synthesis temperature. The enhanced photocatalytic activity of the MoS/g-CN composites was evaluated by the degradation of Rhodamine B in an aqueous solution under visible light. Therein, composites synthesized at 500 °C showed the best photocatalytic performance with a degradation efficiency of 90%, much higher than that of single g-CN. The significant improvement in photocatalytic performance is attributed to the enhancement in light-harvesting and extension in photo-induced charge carriers' lifetime of composites which are originated from the synergic effect between the components. Besides, the photocatalytic mechanism is demonstrated to well-fit into the S-scheme pathway with apparent evidences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292365 | PMC |
http://dx.doi.org/10.1038/s41598-021-94129-0 | DOI Listing |
Alzheimers Dement
December 2024
The University of Texas Health Science Center at Houston, Houston, TX, USA.
Background: Developing drugs for treating Alzheimer's disease (AD) has been extremely challenging and costly due to limited knowledge on underlying biological mechanisms and therapeutic targets. Repurposing drugs or their combination has shown potential in accelerating drug development due to the reduced drug toxicity while targeting multiple pathologies.
Method: To address the challenge in AD drug development, we developed a multi-task machine learning pipeline to integrate a comprehensive knowledge graph on biological/pharmacological interactions and multi-level evidence on drug efficacy, to identify repurposable drugs and their combination candidates RESULT: Using the drug embedding from the heterogeneous graph representation model, we ranked drug candidates based on evidence from post-treatment transcriptomic patterns, mechanistic efficacy in preclinical models, population-based treatment effect, and Phase 2/3 clinical trials.
Alzheimers Dement
December 2024
Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, NSW, Australia.
Background: Alzheimer's Disease (AD) poses a substantial global health burden, necessitating innovative therapeutic strategies. This study investigates the neuroprotective potential of a chrysin-loaded Nanostructured Lipid Carrier (NLC) drug delivery system in AD management. Employing the high-pressure homogenization method, chrysin-loaded NLCs were meticulously formulated to optimize drug delivery efficiency.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan, Iran (Islamic Republic of).
Background: Microbiota of the distal part of the intestine produces Urolithin A (Uro A) as a derivative of ellagitannins hydrolysis. Recently, the mitophagy, anti-inflammatory, and antioxidant properties of Uro A have focused more attention on its probable beneficial effects on neurodegenerative states. The purpose of this research was to study the impact of Uro A on the histopathology of the cerebellum in a rat model of streptozotocin-induced Alzheimer's disease.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indiana University School of Medicine, Indianapolis, IN, USA.
Background: TREM2 signaling has been implicated in Alzheimer's Disease (AD). TREM2 regulates microglial states and functions such as phagocytosis. The most prominent TREM signaling adapter is DAP12, encoded by TYROBP.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
The light-harvesting pigment-protein complex II (LHCII) from plants can be used as a component for biohybrid photovoltaic devices, acting as a photosensitizer to increase the photocurrent generated when devices are illuminated with sunlight. LHCII is effective at photon absorption in the red and blue regions of the visible spectrum, however, it has low absorption in the green region (550-650 nm). Previous studies have shown that synthetic chromophores can be used to fill this spectral gap and transfer additional energy to LHCII, but it was uncertain whether this would translate into an improved performance for photovoltaics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!