https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=34285244&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 342852442021111520230928
2045-23221112021Jul20Scientific reportsSci RepWhole genome sequencing of nearly isogenic WMI and WLI inbred rats identifies genes potentially involved in depression and stress reactivity.14774147741477410.1038/s41598-021-92993-4The WMI and WLI inbred rats were generated from the stress-prone, and not yet fully inbred, Wistar Kyoto (WKY) strain. These were selected using bi-directional selection for immobility in the forced swim test and were then sib-mated for over 38 generations. Despite the low level of genetic diversity among WKY progenitors, the WMI substrain is significantly more vulnerable to stress relative to the counter-selected WLI strain. Here we quantify numbers and classes of genomic sequence variants distinguishing these substrains with the long term goal of uncovering functional and behavioral polymorphism that modulate sensitivity to stress and depression-like phenotypes. DNA from WLI and WMI was sequenced using Illumina xTen, IonTorrent, and 10X Chromium linked-read platforms to obtain a combined coverage of ~ 100X for each strain. We identified 4,296 high quality homozygous SNPs and indels between the WMI and WLI. We detected high impact variants in genes previously implicated in depression (e.g. Gnat2), depression-like behavior (e.g. Prlr, Nlrp1a), other psychiatric disease (e.g. Pou6f2, Kdm5a, Reep3, Wdfy3), and responses to psychological stressors (e.g. Pigr). High coverage sequencing data confirm that the two substrains are nearly coisogenic. Nonetheless, the small number of sequence variants contributes to numerous well characterized differences including depression-like behavior, stress reactivity, and addiction related phenotypes. These selected substrains are an ideal resource for forward and reverse genetic studies using a reduced complexity cross.© 2021. The Author(s).de JongTristan VTVUniversity of Tennessee Health Science Center, Memphis, TN, USA.KimPanjunPUniversity of Tennessee Health Science Center, Memphis, TN, USA.GuryevVictorVEuropean Research Institute for the Biology of Ageing, University of Groningen, Groningen, The Netherlands.MulliganMegan KMKUniversity of Tennessee Health Science Center, Memphis, TN, USA.WilliamsRobert WRWUniversity of Tennessee Health Science Center, Memphis, TN, USA.RedeiEva EEENorthwestern University - Chicago, Chicago, IL, USA.ChenHaoHUniversity of Tennessee Health Science Center, Memphis, TN, USA. hchen@uthsc.edu.engR01 DA048017DANIDA NIH HHSUnited StatesComparative StudyJournal ArticleResearch Support, N.I.H., Extramural20210720
EnglandSci Rep1015632882045-2322IMAnimalsDepressiongeneticsDisease Models, AnimalFemaleGene Regulatory NetworksGenetic VariationHigh-Throughput Nucleotide SequencingINDEL MutationMalePhenotypePolymorphism, Single NucleotideRatsRats, Inbred StrainsRats, Inbred WKYStress, PsychologicalgeneticsWhole Genome SequencingmethodsThe authors declare no competing interests.
2021222202161720217216020217226020211116602021720epublish34285244PMC829248210.1038/s41598-021-92993-410.1038/s41598-021-92993-4WHO . Disease Burden and Mortality Estimates. Geneva: WHO; 2018.Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: Review and meta-analysis. Am. J. Psychiatry. 2000;157:1552–1562. doi: 10.1176/appi.ajp.157.10.1552.10.1176/appi.ajp.157.10.155211007705Fernandez-Pujals AM, et al. Epidemiology and heritability of major depressive disorder, stratified by age of onset, sex, and illness course in generation Scotland: Scottish Family Health Study (GS:SFHS) PLoS ONE. 2015;10:e0142197. doi: 10.1371/journal.pone.0142197.10.1371/journal.pone.0142197PMC464668926571028Wang K, Gaitsch H, Poon H, Cox NJ, Rzhetsky A. Classification of common human diseases derived from shared genetic and environmental determinants. Nat. Genet. 2017;49:1319–1325. doi: 10.1038/ng.3931.10.1038/ng.3931PMC557736328783162Flint J, Kendler KS. The genetics of major depression. Neuron. 2014;81:484–503. doi: 10.1016/j.neuron.2014.01.027.10.1016/j.neuron.2014.01.027PMC391920124507187CONVERGE Consortium Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature. 2015;523:588–591. doi: 10.1038/nature14659.10.1038/nature14659PMC452261926176920Hyde CL, et al. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat. Genet. 2016;48:1031–1036. doi: 10.1038/ng.3623.10.1038/ng.3623PMC570676927479909Wray NR, et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 2018;50:668–681. doi: 10.1038/s41588-018-0090-3.10.1038/s41588-018-0090-3PMC593432629700475Howard DM, et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 2019;22:343–352. doi: 10.1038/s41593-018-0326-7.10.1038/s41593-018-0326-7PMC652236330718901Bryant CD, et al. Facilitating complex trait analysis via reduced complexity crosses. Trends Genet. 2020;36:549–562. doi: 10.1016/j.tig.2020.05.003.10.1016/j.tig.2020.05.003PMC736557132482413Kumar V, et al. C57BL/6N mutation in cytoplasmic FMRP interacting protein 2 regulates cocaine response. Science. 2013;342:1508–1512. doi: 10.1126/science.1245503.10.1126/science.1245503PMC450010824357318Mulligan MK, et al. Identification of a functional non-coding variant in the GABA A receptor α2 Subunit of the C57BL/6J mouse reference genome: Major implications for neuroscience research. Front. Genet. 2019;10:188. doi: 10.3389/fgene.2019.00188.10.3389/fgene.2019.00188PMC644945530984232Louis WJ, Howes LG. Genealogy of the spontaneously hypertensive rat and Wistar-Kyoto rat strains: Implications for studies of inherited hypertension. J. Cardiovasc. Pharmacol. 1990;16(Suppl 7):S1–5. doi: 10.1097/00005344-199006167-00002.10.1097/00005344-199006167-000021708002Kurtz TW, Montano M, Chan L, Kabra P. Molecular evidence of genetic heterogeneity in Wistar-Kyoto rats: Implications for research with the spontaneously hypertensive rat. Hypertension. 1989;13:188–192. doi: 10.1161/01.HYP.13.2.188.10.1161/01.HYP.13.2.1882914738Paré WP, Redei E. Sex differences and stress response of WKY rats. Physiol. Behav. 1993;54:1179–1185. doi: 10.1016/0031-9384(93)90345-G.10.1016/0031-9384(93)90345-G8295961Solberg LC, et al. Sex- and lineage-specific inheritance of depression-like behavior in the rat. Mamm. Genome. 2004;15:648–662. doi: 10.1007/s00335-004-2326-z.10.1007/s00335-004-2326-zPMC376444815457344Malkesman O, et al. Two different putative genetic animal models of childhood depression. Biol. Psychiatry. 2006;59:17–23. doi: 10.1016/j.biopsych.2005.05.039.10.1016/j.biopsych.2005.05.03916095569Tizabi Y, et al. Effects of nicotine on depressive-like behavior and hippocampal volume of female WKY rats. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2010;34:62–69. doi: 10.1016/j.pnpbp.2009.09.024.10.1016/j.pnpbp.2009.09.024PMC281498219800382De La Garza R, Mahoney JJ. A distinct neurochemical profile in WKY rats at baseline and in response to acute stress: Implications for animal models of anxiety and depression. Brain Res. 2004;1021:209–218. doi: 10.1016/j.brainres.2004.06.052.10.1016/j.brainres.2004.06.05215342269Vinod KY, et al. Dysfunction in fatty acid amide hydrolase is associated with depressive-like behavior in Wistar Kyoto rats. PLoS ONE. 2012;7:e36743. doi: 10.1371/journal.pone.0036743.10.1371/journal.pone.0036743PMC335147822606285Dugovic C, Solberg LC, Redei E, Van Reeth O, Turek FW. Sleep in the Wistar-Kyoto rat, a putative genetic animal model for depression. NeuroReport. 2000;11:627–631. doi: 10.1097/00001756-200002280-00038.10.1097/00001756-200002280-0003810718326Baum AE, et al. Test- and behavior-specific genetic factors affect WKY hypoactivity in tests of emotionality. Behav. Brain Res. 2006;169:220–230. doi: 10.1016/j.bbr.2006.01.007.10.1016/j.bbr.2006.01.007PMC376287516490266Solberg LC, Olson SL, Turek FW, Redei E. Altered hormone levels and circadian rhythm of activity in the WKY rat, a putative animal model of depression. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001;281:R786–R794. doi: 10.1152/ajpregu.2001.281.3.R786.10.1152/ajpregu.2001.281.3.R78611506993Schaffer DJ, Tunc-Ozcan E, Shukla PK, Volenec A, Redei EE. Nuclear orphan receptor Nor-1 contributes to depressive behavior in the Wistar-Kyoto rat model of depression. Brain Res. 2010;1362:32–39. doi: 10.1016/j.brainres.2010.09.041.10.1016/j.brainres.2010.09.04120851110Hurley LL, et al. Antidepressant-like effects of curcumin in WKY rat model of depression is associated with an increase in hippocampal BDNF. Behav. Brain Res. 2013;239:27–30. doi: 10.1016/j.bbr.2012.10.049.10.1016/j.bbr.2012.10.049PMC352572723142609Shoval G, et al. Prohedonic effect of cannabidiol in a rat model of depression. Neuropsychobiology. 2016;73:123–129. doi: 10.1159/000443890.10.1159/00044389027010632Kurtz TW, Morris RC., Jr Biological variability in Wistar-Kyoto rats. Implications for research with the spontaneously hypertensive rat. Hypertension. 1987;10:127–131. doi: 10.1161/01.HYP.10.1.127.10.1161/01.HYP.10.1.1273596765Paré WP, Kluczynski J. Differences in the stress response of Wistar-Kyoto (WKY) rats from different vendors. Physiol. Behav. 1997;62:643–648. doi: 10.1016/S0031-9384(97)00191-1.10.1016/S0031-9384(97)00191-19272677Will CC, Aird F, Redei EE. Selectively bred Wistar-Kyoto rats: An animal model of depression and hyper-responsiveness to antidepressants. Mol. Psychiatry. 2003;8:925–932. doi: 10.1038/sj.mp.4001345.10.1038/sj.mp.400134514593430Andrus BM, et al. Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models. Mol. Psychiatry. 2012;17:49–61. doi: 10.1038/mp.2010.119.10.1038/mp.2010.119PMC311712921079605Mehta NS, Wang L, Redei EE. Sex differences in depressive, anxious behaviors and hippocampal transcript levels in a genetic rat model. Genes Brain Behav. 2013;12:695–704.23876038Luo W, et al. Hypothalamic gene expression and postpartum behavior in a genetic rat model of depression. Front. Behav. Neurosci. 2020;14:190.PMC764980533192370Mehta-Raghavan NS, Wert SL, Morley C, Graf EN, Redei EE. Nature and nurture: Environmental influences on a genetic rat model of depression. Transl. Psychiatry. 2016;6:e770. doi: 10.1038/tp.2016.28.10.1038/tp.2016.28PMC487245227023176Williams KA, Mehta NS, Redei EE, Wang L, Procissi D. Aberrant resting-state functional connectivity in a genetic rat model of depression. Psychiatry Res. 2014;222:111–113. doi: 10.1016/j.pscychresns.2014.02.001.10.1016/j.pscychresns.2014.02.00124613017Mulders PC, van Eijndhoven PF, Schene AH, Beckmann CF, Tendolkar I. Resting-state functional connectivity in major depressive disorder: A review. Neurosci. Biobehav. Rev. 2015;56:330–344. doi: 10.1016/j.neubiorev.2015.07.014.10.1016/j.neubiorev.2015.07.01426234819Lim PH, et al. Genetic model to study the co-morbid phenotypes of increased alcohol intake and prior stress-induced enhanced fear memory. Front. Genet. 2018;9:566. doi: 10.3389/fgene.2018.00566.10.3389/fgene.2018.00566PMC627759030538720Lim PH, et al. Premature hippocampus-dependent memory decline in middle-aged females of a genetic rat model of depression. Behav. Brain Res. 2018 doi: 10.1016/j.bbr.2018.02.030.10.1016/j.bbr.2018.02.03029490235Pajer K, et al. Discovery of blood transcriptomic markers for depression in animal models and pilot validation in subjects with early-onset major depression. Transl. Psychiatry. 2012;2:e101. doi: 10.1038/tp.2012.26.10.1038/tp.2012.26PMC333707222832901Redei EE, et al. Blood transcriptomic biomarkers in adult primary care patients with major depressive disorder undergoing cognitive behavioral therapy. Transl. Psychiatry. 2014;4:e442. doi: 10.1038/tp.2014.66.10.1038/tp.2014.66PMC419853325226551Yu JS, Xue AY, Redei EE, Bagheri N. A support vector machine model provides an accurate transcript-level-based diagnostic for major depressive disorder. Transl. Psychiatry. 2016;6:e931. doi: 10.1038/tp.2016.198.10.1038/tp.2016.198PMC529034727779627Redei EE, Ciolino JD, Wert SL, Yang A, Kim S, Clark C, Zumpf KB, Wisner KL. Pilot validation of blood-based biomarkers during pregnancy and postpartum in women with prior or current depression. Transl. Psychiatry. 2020;11:1–9.PMC782044233479202Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–595. doi: 10.1093/bioinformatics/btp698.10.1093/bioinformatics/btp698PMC282810820080505Poplin R, et al. A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 2018 doi: 10.1038/nbt.4235.10.1038/nbt.423530247488Yun T, et al. Accurate, scalable cohort variant calls using DeepVariant and GLnexus. Cold Spring Harbor Lab. 2020 doi: 10.1101/2020.02.10.942086.10.1101/2020.02.10.942086PMC802368133399819Cingolani P, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6:80–92. doi: 10.4161/fly.19695.10.4161/fly.19695PMC367928522728672Shi J, et al. Genome-wide association study of recurrent early-onset major depressive disorder. Mol. Psychiatry. 2011;16:193–201. doi: 10.1038/mp.2009.124.10.1038/mp.2009.124PMC648640020125088Tian R-H, Bai Y, Li J-Y, Guo K-M. Reducing PRLR expression and JAK2 activity results in an increase in BDNF expression and inhibits the apoptosis of CA3 hippocampal neurons in a chronic mild stress model of depression. Brain Res. 2019;1725:146472. doi: 10.1016/j.brainres.2019.146472.10.1016/j.brainres.2019.14647231545956Song A-Q, et al. NLRP1 inflammasome contributes to chronic stress-induced depressive-like behaviors in mice. J. Neuroinflamm. 2020;17:178. doi: 10.1186/s12974-020-01848-8.10.1186/s12974-020-01848-8PMC728192932513185Napoli E, et al. Beyond autophagy: A novel role for autism-linked Wdfy3 in brain mitophagy. Sci. Rep. 2018;8:11348. doi: 10.1038/s41598-018-29421-7.10.1038/s41598-018-29421-7PMC606393030054502Chen K, et al. Drosophila histone demethylase KDM5 regulates social behavior through immune control and gut microbiota maintenance. Cell Host Microbe. 2019;25:537–552.e8. doi: 10.1016/j.chom.2019.02.003.10.1016/j.chom.2019.02.003PMC674983630902578Castermans D, et al. Identification and characterization of the TRIP8 and REEP3 genes on chromosome 10q21.3 as novel candidate genes for autism. Eur. J. Hum. Genet. 2007;15:422–431. doi: 10.1038/sj.ejhg.5201785.10.1038/sj.ejhg.520178517290275Campos-Rodríguez R, et al. Stress modulates intestinal secretory immunoglobulin A. Front. Integr. Neurosci. 2013;7:86. doi: 10.3389/fnint.2013.00086.10.3389/fnint.2013.00086PMC384579524348350Zallocco L, et al. Salivary proteome changes in response to acute psychological stress due to an oral exam simulation in university students: Effect of an olfactory stimulus. Int. J. Mol. Sci. 2021;22:4925. doi: 10.3390/ijms22094295.10.3390/ijms22094295PMC812261233919012Levchenko A, et al. NRG1, PIP4K2A, and HTR2C as potential candidate biomarker genes for several clinical subphenotypes of depression and bipolar disorder. Front. Genet. 2020;11:936. doi: 10.3389/fgene.2020.00936.10.3389/fgene.2020.00936PMC747833333193575Hill SY, Jones BL, Haas GL. Suicidal ideation and aggression in childhood, genetic variation and young adult depression. J. Affect. Disord. 2020;276:954–962. doi: 10.1016/j.jad.2020.07.049.10.1016/j.jad.2020.07.049PMC748435932745832Zhang J-P, et al. Pharmacogenetic associations of antipsychotic drug-related weight gain: A systematic review and meta-analysis. Schizophr. Bull. 2016;42:1418–1437. doi: 10.1093/schbul/sbw058.10.1093/schbul/sbw058PMC504953227217270Li J, Hashimoto H, Meltzer HY. Association of Serotonin2c receptor polymorphisms with antipsychotic drug response in schizophrenia. Front. Psychiatry. 2019;10:58. doi: 10.3389/fpsyt.2019.00058.10.3389/fpsyt.2019.00058PMC638423530828307Way BM, Brown KW, Quaglia J, McCain N, Taylor SE. Nonsynonymous HTR2C polymorphism predicts cortisol response to psychosocial stress II: Evidence from two samples. Psychoneuroendocrinology. 2016;70:142–151. doi: 10.1016/j.psyneuen.2016.04.022.10.1016/j.psyneuen.2016.04.02227211696Avery BM, Vrshek-Schallhorn S. Nonsynonymous HTR2C polymorphism predicts cortisol response to psychosocial stress I: Effects in males and females. Psychoneuroendocrinology. 2016;70:134–141. doi: 10.1016/j.psyneuen.2015.12.023.10.1016/j.psyneuen.2015.12.023PMC494818526787298Bhat SS, et al. Disruption of the IL1RAPL1 gene associated with a pericentromeric inversion of the X chromosome in a patient with mental retardation and autism. Clin. Genet. 2008;73:94–96. doi: 10.1111/j.1399-0004.2007.00920.x.10.1111/j.1399-0004.2007.00920.x18005360Montani C, et al. The X-linked intellectual disability protein IL1RAPL1 regulates dendrite complexity. J. Neurosci. 2017;37:6606–6627. doi: 10.1523/JNEUROSCI.3775-16.2017.10.1523/JNEUROSCI.3775-16.2017PMC659655328576939Lam M, et al. Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat. Genet. 2019;51:1670–1678. doi: 10.1038/s41588-019-0512-x.10.1038/s41588-019-0512-xPMC688512131740837Pizzo R, Lamarca A, Sassoè-Pognetto M, Giustetto M. Structural bases of atypical whisker responses in a mouse model of CDKL5 deficiency disorder. Neuroscience. 2020;445:130–143. doi: 10.1016/j.neuroscience.2019.08.033.10.1016/j.neuroscience.2019.08.03331472213Weaving LS, et al. Mutations of CDKL5 cause a severe neurodevelopmental disorder with infantile spasms and mental retardation. Am. J. Hum. Genet. 2004;75:1079–1093. doi: 10.1086/426462.10.1086/426462PMC118214315492925Raghavan NS, et al. Prepubertal ovariectomy exaggerates adult affective behaviors and alters the hippocampal transcriptome in a genetic rat model of depression. Front. Endocrinol. 2017;8:373. doi: 10.3389/fendo.2017.00373.10.3389/fendo.2017.00373PMC578688829403433Raudvere U, et al. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update) Nucleic Acids Res. 2019;47:W191–W198. doi: 10.1093/nar/gkz369.10.1093/nar/gkz369PMC660246131066453Gunturkun MH, et al. GeneCup: mine PubMed for gene relationships using custom ontology and deep learning. Cold Spring Harbor Lab. 2021 doi: 10.1101/2020.09.17.297358.10.1101/2020.09.17.297358Molendijk ML, de Kloet ER. Coping with the forced swim stressor: Current state-of-the-art. Behav. Brain Res. 2019;364:1–10. doi: 10.1016/j.bbr.2019.02.005.10.1016/j.bbr.2019.02.00530738104Redei EE, et al. Pilot validation of blood-based biomarkers during pregnancy and postpartum in women with prior or current depression. Transl. Psychiatry. 2021;11:68. doi: 10.1038/s41398-020-01188-4.10.1038/s41398-020-01188-4PMC782044233479202Kim, P. et al. Rat reduced complexity model of oxycodone self-administration and stress responsiveness. Virtual NIDA Genetics and Epigenetics Consortium Meeting (2021).Supernat A, Vidarsson OV, Steen VM, Stokowy T. Comparison of three variant callers for human whole genome sequencing. Sci. Rep. 2018;8:17851. doi: 10.1038/s41598-018-36177-7.10.1038/s41598-018-36177-7PMC629477830552369Brouard J-S, Schenkel F, Marete A, Bissonnette N. The GATK joint genotyping workflow is appropriate for calling variants in RNA-seq experiments. J. Anim. Sci. Biotechnol. 2019;10:44. doi: 10.1186/s40104-019-0359-0.10.1186/s40104-019-0359-0PMC658729331249686Ramdas S, et al. Extended regions of suspected mis-assembly in the rat reference genome. Sci. Data. 2019;6:39. doi: 10.1038/s41597-019-0041-6.10.1038/s41597-019-0041-6PMC647890031015470Nishimura T, et al. Role of the PAR-3-KIF3 complex in the establishment of neuronal polarity. Nat. Cell Biol. 2004;6:328–334. doi: 10.1038/ncb1118.10.1038/ncb111815048131Nguyen-Dumont T, Pope BJ, Hammet F, Southey MC, Park DJ. A high-plex PCR approach for massively parallel sequencing. Biotechniques. 2013;55:69–74. doi: 10.2144/000114052.10.2144/00011405223931594Krzywinski M, et al. Circos: An information aesthetic for comparative genomics. Genome Res. 2009;19:1639–1645. doi: 10.1101/gr.092759.109.10.1101/gr.092759.109PMC275213219541911