Organoheterotrophs are the dominant bacteria in most soils worldwide. While many of these bacteria can subsist on atmospheric hydrogen (H), levels of this gas are generally insufficient to sustain hydrogenotrophic growth. In contrast, bacteria residing within soil-derived termite mounds are exposed to high fluxes of H due to fermentative production within termite guts. Here, we show through community, metagenomic, and biogeochemical profiling that termite emissions select for a community dominated by diverse hydrogenotrophic Actinobacteriota and Dormibacterota. Based on metagenomic short reads and derived genomes, uptake hydrogenase and chemosynthetic RuBisCO genes were significantly enriched in mounds compared to surrounding soils. In situ and ex situ measurements confirmed that high- and low-affinity H-oxidizing bacteria were highly active in the mounds, such that they efficiently consumed all termite-derived H emissions and served as net sinks of atmospheric H Concordant findings were observed across the mounds of three different Australian termite species, with termite activity strongly predicting H oxidation rates ( = 0.82). Cell-specific power calculations confirmed the potential for hydrogenotrophic growth in the mounds with most termite activity. In contrast, while methane is produced at similar rates to H by termites, mounds contained few methanotrophs and were net sources of methane. Altogether, these findings provide further evidence of a highly responsive terrestrial sink for H but not methane and suggest H availability shapes composition and activity of microbial communities. They also reveal a unique arthropod-bacteria interaction dependent on H transfer between host-associated and free-living microbial communities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8325338PMC
http://dx.doi.org/10.1073/pnas.2102625118DOI Listing

Publication Analysis

Top Keywords

microbial communities
12
termite
8
emissions select
8
termite mounds
8
hydrogenotrophic growth
8
termite activity
8
mounds
7
termite gas
4
gas emissions
4
hydrogenotrophic
4

Similar Publications

Climate change is rapidly altering Arctic marine environments, leading to warmer waters, increased river discharge, and accelerated sea ice melt. The Hudson Bay Marine System (HBMS) experiences the fastest rate of sea ice loss in the Canadian North resulting in a prolonged open water season during the summer months. We examined microbial communities in the Hudson Strait using high throughput 16s rRNA gene sequencing during the peak of summer, in which the bay was almost completely ice-free, and air temperatures were high.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the positive effects on anti-oxidation, anti-inflammation, and microbial composition optimization of diabetic mice using tussah (Antheraea pernyi) silk fibroin peptides (TSFP), providing the theoretical foundation for making the use of silk resources of A. pernyi and incorporating as a supplement into the hypoglycemic foods.

Method: The animal model of diabetes was established successfully.

View Article and Find Full Text PDF

Protocol for correlating the gut microbiome and metabolomics in patients with intracranial aneurysms.

STAR Protoc

January 2025

Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China; Medical Research Institute, Wuhan University, Wuhan 430072, China; Sino-Italian Ascula Brain Science Joint Laboratory, Wuhan University, Wuhan 430071, China. Electronic address:

Gut-microbiome-combined metabolomics studies in cerebrovascular disease highlight the microbiota-gut-brain axis in neurological disorders. Here, we present a protocol for correlating the gut microbiome and metabolomics in patients with intracranial aneurysms. We describe steps for sample collection, fecal genomic DNA extraction, rRNA PCR amplification, sequencing library construction, and rRNA sequencing.

View Article and Find Full Text PDF

Enhancing nitrogen (N) fixation in rice plants can reduce N fertilizer application and contribute to sustainable rice production, particularly under low-N conditions. However, detailed microbial and metabolic characterization of N fixation in rice stems, unlike in the well-studied roots, has not been investigated. Therefore, the aim of this study was to determine the active N-fixing sites, their diazotroph communities, and the usability of possible carbon sources in stems compared with roots.

View Article and Find Full Text PDF

Soil bacteria are prolific producers of a myriad of biologically active secondary metabolites. These natural products play key roles in modern society, finding use as anti-cancer agents, as food additives, and as alternatives to chemical pesticides. As for their original role in interbacterial communication, secondary metabolites have been extensively studied under in vitro conditions, revealing many roles including antagonism, effects on motility, niche colonization, signaling, and cellular differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!