Impaired motor cortical facilitatory-inhibitory circuit interaction in Parkinson's disease.

Clin Neurophysiol

Division of Neurology, Department of Medicine, University of Toronto and Division of Brain, Imaging & Behaviour - Systems Neuroscience, Krembil Brain Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada. Electronic address:

Published: October 2021

Objective: Motor cortical (M1) inhibition and facilitation can be studied with short-interval intracortical inhibition (SICI) and short-interval intracortical facilitation (SICF). These circuits are altered in Parkinson's disease (PD). The sensorimotor measure short latency afferent inhibition (SAI) is possibly altered in PD. The aim was to determine if the manner in which these circuits interact with each other is abnormal in PD.

Methods: Fifteen PD patients were studied at rest in ON and OFF medication states, and were compared to 16 age-matched controls. A triple-stimulus transcranial magnetic stimulation paradigm was used to elicit a circuit of interest in the presence of another circuit.

Results: SICF was increased in PD OFF and PD ON conditions compared to controls. SICI facilitated SICF in controls and PD ON, but not in PD OFF. SICF in the presence of SICI negatively correlated with UPDRS-III scores in OFF and ON medication conditions. SAI showed similar inhibition of SICI in controls, PD OFF and PD ON conditions.

Conclusions: The facilitatory effect of SICI on SICF is absent in PD OFF, but is restored with dopaminergic medication.

Significance: Impaired interaction between M1 circuits is a pathophysiological feature of PD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinph.2021.05.032DOI Listing

Publication Analysis

Top Keywords

motor cortical
8
parkinson's disease
8
short-interval intracortical
8
inhibition sici
8
sici
5
sicf
5
impaired motor
4
cortical facilitatory-inhibitory
4
facilitatory-inhibitory circuit
4
circuit interaction
4

Similar Publications

In this study, we explored the biocultural mechanisms underlying ancient craft behaviours. Archaeological methods were integrated with neuroscience techniques to explore the impact on neuroplasticity resulting from the introduction of early pottery techniques. The advent of ceramic marked a profound change in the economy and socio-cultural dynamics of past societies.

View Article and Find Full Text PDF

Seizure network characterization by functional connectivity mapping and manipulation.

Neurophotonics

January 2025

Weill Cornell Medicine, Department of Neurological Surgery, New York, United States.

Significance: Despite the availability of various anti-seizure medications, nearly 1/3 of epilepsy patients experience drug-resistant seizures. These patients are left with invasive surgical options that do not guarantee seizure remission. The development of novel treatment options depends on elucidating the complex biology of seizures and brain networks.

View Article and Find Full Text PDF

Objectives: Trunk control involves multiple brain regions related to motor control systems. Therefore, patients with central nervous system (CNS) disorders frequently exhibit impaired trunk control, decreasing their activities of daily living (ADL). Although some therapeutic interventions for trunk impairments have been effective, their general effects on CNS disorders remain unclear.

View Article and Find Full Text PDF

An 88-year-old woman presented with a longstanding history of dizziness, tremors, and progressive mental and physical decline, significantly impairing her mobility and autonomy. Recently discharged from an ICU, the patient required extensive support for daily activities. Diagnostic evaluations, including EEG and analysis, revealed irregular frequency peaks and altered cortical activity, particularly in the frontal and prefrontal regions.

View Article and Find Full Text PDF

Understanding the neural mechanisms underlying emotional processing is critical for advancing neuroscience and mental health interventions. This study examined these mechanisms by analyzing EEG connectivity patterns across different brain regions while participants evoked various emotions. After applying independent component analysis (ICA) to eliminate non-cortical activity, we assessed frequency-specific connectivity patterns using coherence, Granger causality, and graph theoretical measures to evaluate both functional and effective connectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!