Wing shape optimization design inspired by beetle hindwings in wind tunnel experiments.

Comput Biol Med

Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun, 130022, PR China. Electronic address:

Published: August 2021

Flighted beetles have deployable hindwings, which enable them to directly reduce their body size, and thus are excellent bioinspired prototypes for microair vehicles (MAVs). The wing shape of MAVs has an important influence on their aerodynamics. In this paper, wing shapes, inspired from three beetle species' hindwings and designed in terms of the wing camber angle, geometry (including wing length, aspect ratio (AR), and taper ratio (TR)) and wing area, were selected and varied to optimize lift together with the efficiency of wing. All the wings were fabricated by a Tyvek membrane and tested in a wind tunnel. The camber angle and AR were found to have a critical role in force production. The best performance was obtained by a wing with a camber angle of 10°, wing length of 125 mm, AR of 7.06, TR of 0.40 and wing area of 4115 mm.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2021.104642DOI Listing

Publication Analysis

Top Keywords

camber angle
12
wing
10
wing shape
8
wind tunnel
8
wing camber
8
wing length
8
wing area
8
shape optimization
4
optimization design
4
design inspired
4

Similar Publications

Tailless control of a four-winged flapping-wing micro air vehicle with wing twist modulation.

Bioinspir Biomim

January 2025

Aerospace Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea (the Republic of).

This paper describes the tailless control system design of a flapping-wing micro air vehicle in a four-winged configuration, which can provide high control authority to be stable and agile in flight conditions from hovering to maneuvering flights. The tailless control system consists of variable flapping frequency and wing twist modulation. The variable flapping frequency creates rolling moments through differential vertical force from flapping mechanisms that can be independently driven on the left and right sides.

View Article and Find Full Text PDF

The phenomenon of snaking of vehicles can be caused by many factors. It results from the loss of the vehicle's straight-line direction of motion, which is intended by the driver. In this situation, for single-mass vehicles (like automobiles), special systems (braking) are activated, aiming to return the vehicle to the direction intended by the driver.

View Article and Find Full Text PDF

This article presents a numerical study on the 2D aerodynamic characteristics of an airfoil with a morphed camber. The operational regime of the main rotor blade of the IAR 330 PUMA helicopter was encompassed in CFD simulations, performed over an angle of attack range of α=[-3°; 18°], and a Mach number of M=0.38.

View Article and Find Full Text PDF

Ground Strength Test Technique of Variable-Camber Wing Leading Edge.

Biomimetics (Basel)

August 2024

National Key Laboratory of Strength and Structural Integrity, Aircraft Strength Research Institute of China, Xi'an 710065, China.

Morphing wing technology is crucial for enhancing the flight performance of aircraft. To address the monitoring challenges of full-scale variable-camber leading edges under flight conditions, this study introduces a ground-based strength testing technique aimed at precisely evaluating the deformation patterns and structural strength during actual operation. Firstly, the motion characteristics of the variable-camber leading edge were analyzed using numerical simulation based on kinematic theory.

View Article and Find Full Text PDF

A Study of the Friction Characteristics of Rubber Thermo-Mechanical Coupling.

Polymers (Basel)

February 2024

National Engineering Laboratory of Tire Advanced Equipment and Key Materials, Qingdao University of Science and Technology, Qingdao 266100, China.

The friction performance of tread rubber is related to the safety of the vehicle during driving, especially in terms of shifting speeds, cornering, and changing environmental factors. The experimental design used in this paper employed a self-developed automatic multi-working-condition friction tester to investigate the correlation between the friction coefficient of three tread formulations and various factors, including speed, pressure, temperature, side deflection angle, and lateral camber. This experimental study demonstrates that the coefficient of friction decreases with increasing load and increases with increasing sliding velocities due to changes in adhesion friction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!