Oil and petroleum products are known to be among the most widespread soil pollutants. The risk of emergencies is sure to increase greatly in conditions of abnormally low temperatures. Oil and oil products are not only toxic to the environment, but can also have a negative impact on the state of the permafrost zone, accelerating the processes of permafrost degradation. The goal of the research was to study the soils and bottom sediments for oil pollution in the Arctic region of Yakutia. The research was carried out with using the complex of geochemical and microbiological methods of analysis. It had shown that at present oil pollution was mainly concentrated on the objects bearing a high technogenic load. However, some migration of hydrocarbons was observed with melt, seasonal melt and rainwaters, as a result of which the natural background of the nearby territories became technogenic character. In the Arctic conditions for the first time according to the obtained data on geochemical and microbiological studies oxidative destruction of oil pollutants in soil occurred mainly under the influence of physic and chemical environmental factors, not by microbial oxidation. Sluggish processes of mineralization of organic residues and the transformation of oil pollutants by the type of putrefaction led to the colonization of oil-polluted soils of the Arctic with putrefying and pathogenic microorganisms. The purpose of further research will be studying the possibility of intensification of soil remediation processes of technologically disturbed soils at abnormally low temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2021.117680 | DOI Listing |
Int J Biol Macromol
January 2025
The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China. Electronic address:
Cellulose is a renewable biodegradable polymer derived from abundant natural resources. Substituting petroleum-based polymers with cellulose-based bioplastics is an effective way to alleviate environmental issues like resource depletion and white pollution. However, challenges such as poor thermostability, hard to thermoform and water sensitivity seriously hinder the fabrication and use of cellulose-based bioplastics.
View Article and Find Full Text PDFMar Environ Res
January 2025
South China Sea Ecological Center of Ministry of Natural Resources (MNR), Nansha Islands Coral Reef Ecosystem National Observation and Research Station, & Key Laboratory of Marine Environmental Survey Technology and Application of MNR, Guangzhou, 510300, China.
Microplastic pollution in marine environments has become a global concern due to its potential ecological risks. However, long-term data on microplastic distribution are scare, hindering the assessment of the ecological threats. This study monitored microplastics pollution in the surface water of the northern South China Sea from 2019 to 2023.
View Article and Find Full Text PDFSci Rep
January 2025
Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi'an, 710061, Shaanxi, China.
Bacteria, fungi, archaea, and viruses are reflective organisms that indicate soil health. Investigating the impact of crude oil pollution on the community structure and interactions among bacteria, fungi, archaea, and viruses in Calamagrostis epigejos soil can provide theoretical support for remediating crude oil pollution in Calamagrostis epigejos ecosystems. In this study, Calamagrostis epigejos was selected as the research subject and subjected to different levels of crude oil addition (0 kg/hm, 10 kg/hm, 40 kg/hm).
View Article and Find Full Text PDFChemosphere
January 2025
Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, 88049-900, P. O. Box 476, Florianopolis, SC, Brazil. Electronic address:
The effect of the in vitro acute exposure to diesel oil (0.001%, 0.01%, 0.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
Microplastic pollution has become a pervasive environmental challenge due to their global distribution and putatively harmful effects on organisms at different ecotoxicological endpoints. However, in some cases, the effects of microplastics are similar to, or even less harmful than those of naturally occurring particles. Bioplastics, developed as a more sustainable alternative to traditional plastics, still have unclear effects compared with oil-based microplastics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!