Molecular mechanism associated with the use of magnetic fermentation in modulating the dietary lipid composition and nutritional quality of goat milk.

Food Chem

School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China. Electronic address:

Published: January 2022

Standard fermentation (SF) mainly affected the metabolism of glycerophospholipid and sphingolipid, and increased the total lipid content of goat milk. Content of total lipid was decreased by magnetic fermentation compared with SF, mainly due to triacylglycerol and diacylglycerol. Comprehensive characteristic of lipids dynamic changes during standard and magnetic fermentation was performed using high-throughput quantitative lipidomics. Totally, 488 lipid molecular species covering 12 subclasses were detected, and triacylglycerol was the highest levels, followed by diacylglycerol and phosphoethanolamine in the whole fermentation stage. Specifically, except for ceramide and simple Glc series, the content of all polar lipids in SF was dropped and neutral lipids subjoined. Compared with SF, the decrease of triacylglycerol (1752.47 to 784.78 μg/mL), diacylglycerol (60.36 to 24.89 μg/mL) and simple Glc series (4.36 to 2.40 μg/mL) were observed, while ceramide (6.54 to 25.87 μg/mL) increased, suggesting magnetic fermentation as effective approach to potentially improve the nutritional of goat milk.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2021.130554DOI Listing

Publication Analysis

Top Keywords

magnetic fermentation
16
goat milk
12
total lipid
8
simple glc
8
glc series
8
fermentation
6
molecular mechanism
4
mechanism associated
4
magnetic
4
associated magnetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!