Distinct Gene Expression Profile in Patients With Poor Postoperative Outcomes After Rotator Cuff Repair: A Case-Control Study.

Am J Sports Med

Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA.

Published: August 2021

Background: Impaired healing after rotator cuff repair is a major concern, with retear rates as high as 94%. A method to predict whether patients are likely to experience poor surgical outcomes would change clinical practice. While various patient factors, such as age and tear size, have been linked to poor functional outcomes, it is currently very challenging to predict outcomes before surgery.

Purpose: To evaluate gene expression differences in tissue collected during surgery between patients who ultimately went on to have good outcomes and those who experienced a retear, in an effort to determine if surgical outcomes can be predicted.

Study Design: Case-control study; Level of evidence, 3.

Methods: Rotator cuff tissue was collected at the time of surgery from 140 patients. Patients were tracked for a minimum of 6 months to identify those with good or poor outcomes, using clinical functional scores and follow-up magnetic resonance imaging to confirm failure to heal or retear. Gene expression differences between 8 patients with poor outcomes and 28 patients with good outcomes were assessed using a multiplex gene expression analysis via NanoString and a custom-curated panel of 145 genes related to various stages of rotator cuff healing.

Results: Although significant differences in the expression of individual genes were not observed, gene set enrichment analysis highlighted major differences in gene sets. Patients who had poor healing outcomes showed greater expression of gene sets related to extracellular matrix production ( < .0001) and cellular biosynthetic pathways ( < .001), while patients who had good healing outcomes showed greater expression of genes associated with the proinflammatory (M1) macrophage phenotype ( < .05).

Conclusion: These results suggest that a more proinflammatory, fibrotic environment before repair may play a role in poor healing outcome. With validation in a larger cohort, these results may ultimately lead to diagnostic methods to preoperatively predict those at risk for poor surgical outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1177/03635465211023212DOI Listing

Publication Analysis

Top Keywords

gene expression
16
rotator cuff
16
patients poor
12
outcomes
12
surgical outcomes
12
patients
9
poor
8
cuff repair
8
case-control study
8
poor surgical
8

Similar Publications

Acute inflammation induces acute megakaryopoiesis with impaired platelet production during fetal hematopoiesis.

Development

January 2025

Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.

Hematopoietic development is tightly regulated by various factors. The role of RNA m6A modification during fetal hematopoiesis, particularly in megakaryopoiesis, remains unclear. Here, we demonstrate that loss of m6A methyltransferase METTL3 induces formation of double-stranded RNAs (dsRNAs) and activates acute inflammation during fetal hematopoiesis.

View Article and Find Full Text PDF

Mining Silent Biosynthetic Gene Clusters for Natural Products in Filamentous Fungi.

Chem Biodivers

January 2025

Zhejiang University, Polytechnic Institute, 866 Yuhangtang Road, Hangzhou, CHINA.

Filamentous fungi are of great interest due to their powerful metabolic capabilities and potentials to produce abundant various secondary metabolites as natural products (NPs), some of which have been developed into pharmaceuticals. Furthermore, high-throughput genome sequencing has revealed tremendous cryptic NPs underexplored. Based on the development of in silico genome mining, various techniques have been introduced to rationally modify filamentous fungi,awakening the silent biosynthetic gene clusters (BGCs) and visualizing the NPs originally cryptic.

View Article and Find Full Text PDF

Unlabelled: a natural inhabitant of the human body, is a promising candidate vehicle for vaccine delivery. An obstacle in developing bacterial delivery vehicles is generating a production strain that lacks antibiotic resistance genes and contains minimal foreign DNA. To deal with this obstacle, we have constructed a finetuned, inducible two-plasmid CRISPR/Cas9-system for chromosomal gene insertion in .

View Article and Find Full Text PDF

One key determinant of HIV-1 latency reversal is the activation of the viral long terminal repeat (LTR) by cellular transcription factors such as NF-κB and AP-1. Interestingly, the activity of these two transcription factors can be modulated by glucocorticoid receptors (GRs). Furthermore, the HIV-1 genome contains multiple binding sites for GRs.

View Article and Find Full Text PDF

Plant growth-promoting rhizobacterium Sp7 utilizes fructose efficiently via a fructose phosphotransferase system (Fru-PTS). Its genome encodes two putative Fru-PTS, each consisting of FruB (EIIA), FruK (Pfk), and FruA (EIIBC) proteins. We compared the proteomes of Sp7 grown with malate or fructose as sole carbon source, and noticed upregulation of the constituent proteins of Fru-PTS1 only on fructose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!