Epitope Mapping of an Antihuman EGFR Monoclonal Antibody (EMab-134) Using the REMAP Method.

Monoclon Antib Immunodiagn Immunother

Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.

Published: August 2021

The epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor that plays an important role in normal epidermal cell physiology. EGFR is overexpressed in cancer cells and has a number of mutations that implicate tumor malignancy, development, and poor patient prognosis; thus, EGFR is an attractive target for cancer therapy. At present, anti-EGFR monoclonal antibodies (mAbs) have been approved and are used for treating patients with a variety of EGFR-expressing cancers. Epitope mapping is important in identifying the therapeutic mechanism of anti-EGFR mAbs; however, the development of epitope mapping techniques lags behind the development of antimolecular target mAbs, including anti-EGFR mAbs. Hence, in this study, a novel epitope mapping method, RIEDL insertion for epitope mapping (REMAP) method, was developed. The results of this study demonstrated that the critical epitope of anti-EGFR mAb EMab-134 is Gly378, Asp379, Ser380, Phe381, Thr382, His383, Thr384, Pro385, and Pro386 of EGFR. The REMAP method could be useful for determining the critical epitope of functional mAbs against many target molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1089/mab.2021.0014DOI Listing

Publication Analysis

Top Keywords

epitope mapping
20
remap method
12
anti-egfr mabs
8
critical epitope
8
epitope
7
egfr
5
mabs
5
mapping antihuman
4
antihuman egfr
4
egfr monoclonal
4

Similar Publications

Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis worldwide in all age groups and cause significant disease and economic burden globally. To date, no approved vaccines or antiviral therapies are available to treat or prevent HuNoV illness. Several candidate vaccines are in clinical trials, although potential barriers to successful development must be overcome.

View Article and Find Full Text PDF

Anti-immune complex antibodies are elicited during repeated immunization with HIV Env immunogens.

Sci Immunol

January 2025

Department of Integrative, Structural and Computational Biology, Scripps Research, La Jolla, CA, USA.

Vaccination strategies against HIV-1 aim to elicit broadly neutralizing antibodies (bnAbs) using prime-boost regimens with HIV envelope (Env) immunogens. Epitope mapping has shown that early antibody responses are directed to easily accessible nonneutralizing epitopes on Env instead of bnAb epitopes. Autologously neutralizing antibody responses appear upon boosting, once immunodominant epitopes are saturated.

View Article and Find Full Text PDF

Gene expression is regulated by chromatin DNA methylation and other features, including histone post-translational modifications (PTMs), chromatin remodelers and transcription factor occupancy. A complete understanding of gene regulation will require the mapping of these chromatin features in small cell number samples. Here we describe a novel genome-wide chromatin profiling technology, named as Nicking Enzyme Epitope targeted DNA sequencing (NEED-seq).

View Article and Find Full Text PDF

Development of monoclonal antibodies for ASFV K205R protein and precise mapping of linear antigenic epitopes.

Int J Biol Macromol

January 2025

International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China. Electronic address:

African swine fever virus (ASFV) is a complex DNA virus belonging to the family Asfarviridae. The outbreak of African swine fever (ASF) has caused huge economic losses to the pig farming industry. The K205R protein is a key target for detecting ASFV antibodies and represents an important antigen for early serologic diagnosis.

View Article and Find Full Text PDF

RosettaHDX: Predicting antibody-antigen interaction from hydrogen-deuterium exchange mass spectrometry data.

J Struct Biol

January 2025

Center of Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Institute for Drug Discovery, Institute for Computer Science, Wilhelm Ostwald Institute for Physical and Theoretical Chemistry, University Leipzig, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence ScaDS.AI and School of Embedded Composite Artificial Intelligence SECAI, Dresden/Leipzig, Germany; Department of Pharmacology, Institute of Chemical Biology, Center for Applied Artificial Intelligence in Protein Dynamics, Vanderbilt University, Nashville, TN, USA. Electronic address:

High-throughput characterization of antibody-antigen complexes at the atomic level is critical for understanding antibody function and enabling therapeutic development. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) enables rapid epitope mapping, but its data are too sparse for independent structure determination. In this study, we introduce RosettaHDX, a hybrid method that combines computational docking with differential HDX-MS data to enhance the accuracy of antibody-antigen complex models beyond what either method can achieve individually.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!