Carbamate-bearing carbohydrates contribute to the pharmacological properties of various natural glycosides. The catalytic site-selective carbamoylation of minimally protected pyranosides was achieved for the first time to bypass protection/deprotection sequences. 1-Carbamoylimidazoles were used as the carbamoylation reagents to circumvent the harmful and unstable phosgene and isocyanates. This borinic acid catalyzed transformation granted an expedient access to the tumor cell-binding carbamoylmannoside moiety of bleomycins and analogs in yields of 56% to 89%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.1c02116 | DOI Listing |
Org Lett
January 2025
Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
Here, we present a three-component successive radical addition strategy for the preparation of complex noncanonical α-amino acids from easily available glycine derivatives, alkenes, and aryl sulfonium salts via a copper-catalyzed photoredox-neutral catalytic cycle. The utility of this method is further demonstrated by its application in late-stage site-selective modifications of glycine residues in short peptides. It is worth noting that only 1 mol % copper catalyst is required in this reaction, demonstrating high catalytic efficiency.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
A site-selective coupling involving quinoxalin-2-ones with alkenes and alkynes has been developed through synergistic visible-light photoredox cobalt catalysis. This method enables C3-selective alkylation and alkenylation of both -substituted and -unsubstituted quinoxalin-2-ones, achieving high yields under mild conditions. Of note, the protocol facilitates the incorporation of two alkene units, leading to a formal three-component coupling, whereas a two-component coupling is preferred for alkynes.
View Article and Find Full Text PDFOrg Lett
January 2025
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
4'-Selective alkylation of nucleosides has been recognized as one of the ideal and straightforward approaches to chemically modified nucleosides, but such a transformation has been scarce and less explored. In this Letter, we combine a visible-light-mediated photoredox catalysis and hydrogen atom transfer (HAT) auxiliary to achieve β-C(sp)-H alkylation of alcohol on tetrahydrofurfuryl alcohol scaffolds and exploit it for 4'-selective alkylation of nucleosides. The reaction involves an intramolecular 1,5-HAT process and stereocontrolled Giese addition of the resultant radicals.
View Article and Find Full Text PDFChem Sci
January 2025
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
α-Halo borides are generally constructed Matteson homologation, and the synthesis of both fluorinated and functionalized ambiphilic boronates is challenging and has received inadequate attention. Herein, we describe the -methyliminodiacetyl boronate [B(MIDA)]-directed halogenation of alkenes a complementary sequence involving fluoroalkyl radical addition followed by guided radical-to-metal oxidative addition and C-X reductive elimination. The alkali cation and functional groups in B(MIDA) enable coulombic interaction and weak attraction with halogens, which could weaken the Pd-X bond and assist in C-X bond formation and is verified by DFT calculations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States.
Understanding the carbon formation on Ni surfaces is critical for the controlled Ni-based nanofabrication and heterogeneous catalysis. Due to the high solubility of carbon in nickel and the complicated migrations of carbon in the near-surface area, achieving a fundamental understanding of the initial carbonation of a Ni surface at an atomic level is experimentally challenging. Herein, the initial formation of surface carbon adsorbates on Ni(111) from the Boudouard reaction (2CO ↔ CO + C) is studied by scanning tunneling microscopy (STM) in combination with density functional theory (DFT) calculations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!