Catalyst Formation and Monitoring of the Electrocatalytic Activity in Flow Reactors.

ACS Appl Mater Interfaces

Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.

Published: August 2021

AI Article Synopsis

  • Flow reactors are increasingly essential in various processes like chemical synthesis and waste treatment, with a focus on electrochemical hydrogen evolution reaction (HER).
  • Catalyst materials such as transition-metal chalcogenides (TMCs) play a vital role in enhancing the HER, but localized catalyst failures can hinder overall performance.
  • A novel method using scanning electrochemical microscopy enables detailed analysis of catalytic activity and catalyst deposition in flow reactors, providing insights for optimizing performance under real operational conditions.

Article Abstract

Flow reactors are of increasing importance and have become crucial devices due to their wide application in chemical synthesis, electrochemical hydrogen evolution reaction (HER), or electrochemical waste water treatment. In many of these applications, catalyst materials such as transition-metal chalcogenides (TMCs) for the HER, provide the desired electrochemical reactivity for the HER. Generally, the flow electrolyzers' performance is evaluated as the overall output, but the decrease in activity of the electrolyzer is due to localized failure of the catalyst. Herein, we present a method for the spatially resolved (tens of micrometers) analysis of the catalytic activity under real operation conditions as well as the localized deposition of the catalyst in an operating model flow reactor. For these purposes, scanning electrochemical microscopy was applied for MoS catalyst deposition and for localized tracking of the TMC activity with a resolution of 25 μm. This approach offers detailed information about the catalytic performance and should find broad application for the characterization and optimization of flow reactor catalysis under real operational conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c09127DOI Listing

Publication Analysis

Top Keywords

flow reactors
8
flow reactor
8
catalyst
5
flow
5
catalyst formation
4
formation monitoring
4
monitoring electrocatalytic
4
activity
4
electrocatalytic activity
4
activity flow
4

Similar Publications

Surface Complexation and Packed Bed Mass Transport Models Enable Adsorbent Design for Arsenate and Vanadate Removal.

ACS ES T Eng

October 2024

School of Sustainable Engineering & the Built Environment, Arizona State University, Tempe, Arizona 85287, United States of America.

Co-occurrence of metal oxo-anions (e.g., arsenate) in drinking water pose human health risks.

View Article and Find Full Text PDF

The sulfur-containing chemical warfare agents sulfur mustard HD and nerve agent VX are highly toxic and persistent in the environment. Therefore, their neutralisation requires harsh oxidation conditions, but also precise selectivity. Here we report the safe and effective detoxification of surrogates CEES and PhX by selective oxidation of the sulfur atom by generating peracetic acid from AcOEt and aq.

View Article and Find Full Text PDF

Study of the hydrodynamic parameters in an internal flat-plate airlift reactor for the increased degradation of newspaper by .

Environ Technol

January 2025

Colegio de Postgraduados, Posgrado de Edafología, Microbiología de Suelos, Montecillo, Estado de México, México.

The aim of our study was to characterize the hydrodynamics and mass transfer in a novel internal flat-plate airlift cylindrical reactor to increase the biodegradation of newspaper. We evaluated the degradation kinetics of newspaper in a batch culture with . Gas holdup, mixing time, the Reynolds number, and volumetric mass transfer coefficient () properties were characterized in biphasic and triphasic systems in order to optimize their operational conditions.

View Article and Find Full Text PDF

Experimental and kinetic modeling study of oxidative degradation of benzene and phenol in supercritical water.

J Environ Manage

January 2025

Shaanxi Key Laboratory of New Transportation Energy and Automotive Energy Saving, School of Energy and Electrical Engineering, Chang'an University, Xi'an, Shaanxi, 710064, PR China.

Benzene and phenol are representative aromatic compounds existing commonly in wastewater. The kinetics of oxidative degradation of benzene and phenol in supercritical water have been investigated in a flow reactor at 823 K and 250 atm, with the excess oxygen ratio ranging from 0.5 to 2.

View Article and Find Full Text PDF

Inorganic bioelectric system for nitrate removal with low NO production at cold temperatures of 4 and 10 °C.

Water Res

December 2024

Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Bygning 115, 2800 Kgs, Lyngby, Denmark. Electronic address:

Groundwater, essential for ecological stability and freshwater supply, faces escalating nitrate contamination. Traditional biological methods struggle with organic carbon scarcity and low temperatures, leading to an urgent need to explore efficient approaches for groundwater remediation. In this work, we proposed an inorganic bioelectric system designed to confront these challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!