Age-Related Neurometabolomic Signature of Mouse Brain.

ACS Chem Neurosci

Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, California 92697, United States.

Published: August 2021

Neurometabolites are the ultimate gene products in the brain and the most precise biomolecular indicators of brain endophenotypes. Metabolomics is the only "omics" that provides a moment-to-moment "snapshot" of brain circuits' biochemical activities in response to external stimuli within the context of specific genetic variations. Although the expression levels of neurometabolites are highly dynamic, the underlying metabolic processes are tightly regulated during brain development, maturation, and aging. Therefore, this study aimed to identify mouse brain metabolic profiles in neonatal and adult stages and reconstruct both the active metabolic network and the metabolic pathway functioning. Using high-throughput metabolomics and bioinformatics analyses, we show that the neonatal mouse brain has its distinct metabolomic signature, which differs from the adult brain. Furthermore, lipid metabolites showed the most profound changes between the neonatal and adult brain, with some lipid species reaching 1000-fold changes. There were trends of age-dependent increases and decreases among lipids and non-lipid metabolites, respectively. A few lipid metabolites such as HexCers and SHexCers were almost absent in neonatal brains, whereas other non-lipid metabolites such as homoarginine were absent in the adult brains. Several molecules that act as neurotransmitters/neuromodulators showed age-dependent levels, with adenosine and GABA exhibiting around 100- and 10-fold increases in the adult compared with the neonatal brain. Of particular interest is the observation that purine and pyrimidines nucleobases exhibited opposite age-dependent changes. Bioinformatics analysis revealed an enrichment of lipid biosynthesis pathways in metabolites, whose levels increased in adult brains. In contrast, pathways involved in the metabolism of amino acids, nucleobases, glucose (glycolysis), tricarboxylic acid cycle (TCA) were enriched in metabolites whose levels were higher in the neonatal brains. Many of these pathways are associated with pathological conditions, which can be predicted as early as the neonatal stage. Our study provides an initial age-related biochemical directory of the mouse brain and warrants further studies to identify temporal brain metabolome across the lifespan, particularly during adolescence and aging. Such neurometabolomic data may provide important insight about the onset and progression of neurological/psychiatric disorders and may ultimately lead to the development of precise diagnostic biomarkers and more effective preventive/therapeutic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.1c00259DOI Listing

Publication Analysis

Top Keywords

mouse brain
16
brain
12
neonatal adult
8
adult brain
8
brain lipid
8
lipid metabolites
8
non-lipid metabolites
8
neonatal brains
8
adult brains
8
metabolites levels
8

Similar Publications

Over recent years, the retina has been increasingly investigated as a potential biomarker for dementia. A number of studies have looked at the effect of Alzheimer's disease (AD) pathology on the retina and the associations of AD with visual deficits. However, while OCT-A has been explored as a biomarker of cerebral small vessel disease (cSVD), studies identifying the specific retinal changes and mechanisms associated with cSVD are lacking.

View Article and Find Full Text PDF

Background: Therapeutic antibodies for the treatment of neurological disease show great potential, but their applications are rather limited due to limited brain exposure. The most well-studied approach to enhance brain influx of protein therapeutics, is receptor-mediated transcytosis (RMT) by targeting nutrient receptors to shuttle protein therapeutics over the blood-brain barrier (BBB) along with their endogenous cargos. While higher brain exposure is achieved with RMT, the timeframe is short due to rather fast brain clearance.

View Article and Find Full Text PDF

Objective: Reactivity of microglia, the resident cells of the brain, underlies innate immune mechanisms (e.g., injury repair), and disruption of microglial reactivity has been shown to facilitate psychiatric disorder dysfunctions.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by memory loss and neuropsychiatric symptoms associated with cerebral amyloid-β (Aβ) and tau pathologies, but whether and how these factors differentially disrupt neural circuits remains unclear. Here, we investigated the vulnerability of memory and emotional circuits to Aβ and tau pathologies in mice expressing mutant human amyloid precursor protein (APP), Tau or both APP/Tau in excitatory neurons. APP/Tau mice develop age- and sex-dependent Aβ and phosphorylated tau pathologies, the latter exacerbated at early stages, in vulnerable brain regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!