β-Methylamino-L-alanine-induced protein aggregation in vitro and protection by L-serine.

Amino Acids

Neurotoxin Research Group, School of Life Sciences, University of Technology Syd, ney, Faculty of Science, Building 4, Level 7, room 329. Thomas Street, Sydney, NSW, 2007, Australia.

Published: September 2021

The cyanobacterial non-protein amino acid α-amino-β-methylaminopropionic acid, more commonly known as BMAA, was first discovered in the seeds of the ancient gymnosperm Cycad circinalis (now Cycas micronesica Hill). BMAA was linked to the high incidence of neurological disorders on the island of Guam first reported in the 1950s. BMAA still attracts interest as a possible causative factor in amyotrophic lateral sclerosis (ALS) following the identification of ALS disease clusters associated with living in proximity to lakes with regular cyanobacterial blooms. Since its discovery, BMAA toxicity has been the subject of many in vivo and in vitro studies. A number of mechanisms of toxicity have been proposed including an agonist effect at glutamate receptors, competition with cysteine for transport system x and other mechanisms capable of generating cellular oxidative stress. In addition, a wide range of studies have reported effects related to disturbances in proteostasis including endoplasmic reticulum stress and activation of the unfolded protein response. In the present studies we examine the effects of BMAA on the ubiquitin-proteasome system (UPS) and on chaperone-mediated autophagy (CMA) by measuring levels of ubiquitinated proteins and lamp2a protein levels in a differentiated neuronal cell line exposed to BMAA. The BMAA induced increases in oxidised proteins and the increase in CMA activity reported could be prevented by co-administration of L-serine but not by the two antioxidants examined. These data provide further evidence of a protective role for L-serine against the deleterious effects of BMAA.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00726-021-03049-wDOI Listing

Publication Analysis

Top Keywords

bmaa
8
effects bmaa
8
β-methylamino-l-alanine-induced protein
4
protein aggregation
4
aggregation vitro
4
vitro protection
4
protection l-serine
4
l-serine cyanobacterial
4
cyanobacterial non-protein
4
non-protein amino
4

Similar Publications

Cyanobacteria, also known as blue-green algae, are a diverse phylum of photosynthetic, Gram-negative bacteria and one of the largest microbial taxa. These organisms produce cyanotoxins, which are secondary metabolites that can have significant impacts on both human health and the environment. While toxins like Microcystins and Cylindrospermopsins are well-documented and have been extensively studied, other cyanotoxins, including those produced by and , remain underexplored.

View Article and Find Full Text PDF

Cyanobacterial harmful algal blooms (cHABs) are increasing due to eutrophication and climate change, as is irrigation of crops with freshwater contaminated with cHAB toxins. A few studies, mostly in aquatic protists and plants, have investigated the effects of cHAB toxins or cell extracts on various aspects of photosynthesis, with variable effects reported (negative to neutral to positive). We examined the effects of cyanobacterial live cultures and cell extracts ( or ) and individual cHAB toxins (anatoxin-a, ANA; beta-methyl-amino-L-alanine, BMAA; lipopolysaccharide, LPS; microcystin-LR, MC-LR) on photosynthesis in intact plants and leaf pieces in corn () and lettuce ().

View Article and Find Full Text PDF

The biotoxin BMAA promotes mesenchymal transition in neuroblastoma cells.

bioRxiv

November 2024

Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America.

Mesenchymal-like cancer cells are an indicator of malignant tumors as they exhibit tumorigenic properties including downregulation of differentiation markers, and increased colony-forming potential, motility, and chemoresistance. We have previously demonstrated that the cyanobacterial biotoxin beta-methylamino-L-alanine (BMAA) is capable of influencing neural cell differentiation state through mechanisms involving the Wnt signaling pathway, suggesting the possibility that BMAA may play a role in influencing other Wnt related differentiation processes including mesenchymal transition. In this study we present evidence characterizing the effects of BMAA on mesenchymal transition in a human neuroblastoma cell line and provide support for the hypothesis that the biotoxin can promote this process in these cells by altering differentiation state, inducing changes in gene expression, and changing cellular function in manners consistent with cellular mesenchymal transition.

View Article and Find Full Text PDF

BMAA and its isomers, DAB and AEG, are toxins mainly produced by cyanobacterial blooms and represent an emerging risk worldwide. Anthropization and climate changes are expanding blooms and the presence of these toxins has been evidenced in different environments including water and air. Investigated since decades, BMAA is a recognized danger in cases of bioaccumulation or when directly exposed to relatively high doses (μg/L).

View Article and Find Full Text PDF

Sex differences in β-N-Methylamino-L-alanine effects on zebrafish behavioral response.

Neurotoxicology

December 2024

Institute of Health, University of Passo Fundo, Passo Fundo, RS, Brazil; Medical School, University of Passo Fundo, Passo Fundo, RS, Brazil; Graduate Program in Environmental Sciences, University of Passo Fundo, Passo Fundo, RS, Brazil. Electronic address:

The β-N-methylamino-L-alanine (BMAA) is a neurotoxin produced by cyanobacteria and diatoms and related by triggered neurodegeneration. The exposure to neurotoxins has also been reported by causing emotional and neuroendocrine effects and these effects may be sex-specific. However, the effects of BMAA on emotions and pain, as well as neuroendocrine modulations remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!