A temperature downshift results in stabilized secondary structure formation in mRNA that halts translation to which Escherichia coli responds by synthesizing a set of proteins termed as cold shock proteins (Csps). To cope with the sudden temperature drop, gene expression patterns are reprogrammed to induce Csps at the cost of other proteins. Out of the nine homologous proteins in the CspA family, CspA, CspB, CspG, and CspI have major roles in protecting the cell under a cold shock. Additionally, a subset of Csps has conferred the organism an ability to adapt to various stresses along the lines of nutrient deprivation, oxidative, heat, acid, and antibiotic stresses. Stressors like C group translational inhibitors stall the translational apparatus and produce a response similar to that observed under a temperature downshift. Conditions set by the antibiotic therefore elicit a cold shock response and induce the major Csps, thereby pointing out to a common mechanism existing between the two. In the current review, we briefly describe the induction of E. coli Csps under an antibiotic stress acquired from data published previously and help establish the role of Csps in protecting the cell against the inducing agents and as a participant in the organisms' complex stress response network.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-021-02613-7 | DOI Listing |
Sci Rep
January 2025
Department of Veterinary Medicine, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy.
Understanding the molecular mechanisms that confer cold resistance in mammalian cells might be relevant for advancing medical applications. This study aimed to exploit the protective function of Late Embryogenesis Abundant (LEA) proteins, known to provide resistance to low temperatures in extremophiles and plants, by their exogenous expression in mammalian cells, and compare their effects with the well characterized antioxidant, vitamin E.Remarkably, the expression of LEA proteins in mammalian cells exerted cold-protective effect similar to Vitamin E.
View Article and Find Full Text PDFNat Commun
January 2025
Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
During cold acclimation in high-latitude and high-altitude regions, japonica rice develops enhanced cold tolerance, but the underlying genetic basis remains unclear. Here, we identify CTB5, a homeodomain-leucine zipper (HD-Zip) transcription factor that confers cold tolerance at the booting stage in japonica rice. Four natural variations in the promoter and coding regions enhance cold response and transcriptional regulatory activity, enabling the favorable CTB5 allele to improve cold tolerance.
View Article and Find Full Text PDFInsects
January 2025
Zoological Institute, Russian Academy of Sciences, Universitetskaya 1, 199034 St. Petersburg, Russia.
Insect diapause and response to thermal stress are similar in the variety of manifestations. However, the influence of thermal shocks on the incidence of insect diapause has not been sufficiently studied. Our laboratory experiments showed that both cold (-10 °C) and heat (43 °C) shocks experienced for at least 20-30 min significantly reduced the incidence of facultative larval winter diapause in the insect egg parasitoid .
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA.
Background/objectives: Cold stress poses a significant threat to Asian rice cultivation, disrupting important physiological processes crucial for seedling establishment and overall plant growth. It is, thus, crucial to elucidate genetic pathways involved in cold stress tolerance response mechanisms.
Methods: We mapped , a ()-type homolog of rice, to a low-temperature seedling survivability (LTSS) QTL and used genomics, molecular genetics, and physiological assays to assess its role in plant resilience against low-temperature stress.
Genes (Basel)
December 2024
Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China.
Background/objectives: Cold stress is the main environmental factor that affects the growth and development of rice, leading to a decrease in its yield and quality. However, the molecular mechanism of rice's low-temperature resistance remains incompletely understood.
Methods: In this study, we conducted a joint analysis of miRNA and mRNA expression profiles in the cold-resistant material Yongning red rice and the cold-sensitive material B3 using high-throughput sequencing.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!